Zulip Chat Archive
Stream: Is there code for X?
Topic: monotonicty of l^p norms
Andrew Souther (Jan 13 2021 at 19:07):
Does mathlib
have a proof for the monotonicity of norms in finite dimension? Something like this inequality:
for .
Or in Lean, it may look like this:
example {ι : Type*} (s : finset ι) (f : ι → ℝ≥0) {p q : ℝ} (hp : 1 ≤ p) (hpq : p ≤ q) :
(∑ (i : ι) in s, f i ^ q) ^ (1 / q) ≤ (∑ (i : ι) in s, f i ^ p) ^ (1 / p) :=
sorry
Ruben Van de Velde (Jan 13 2021 at 19:20):
I'd start looking around https://leanprover-community.github.io/mathlib_docs/analysis/mean_inequalities.html
Sebastien Gouezel (Jan 13 2021 at 19:27):
We have docs#ℒp_space.snorm_le_snorm_of_exponent_le on probability spaces.
Heather Macbeth (Jan 13 2021 at 19:28):
But I think that's the opposite direction!
Sebastien Gouezel (Jan 13 2021 at 19:29):
Ah, yes. Sorry!
Rémy Degenne (Jan 21 2021 at 13:25):
I proved it for a sum of two terms in #5828. See rpow_add_rpow_le
.
Last updated: Dec 20 2023 at 11:08 UTC