Zulip Chat Archive
Stream: Is there code for X?
Topic: mul_dvd_of_coprime
Kenny Lau (May 23 2020 at 14:06):
import ring_theory.euclidean_domain
theorem mul_dvd_of_coprime {α : Type} [euclidean_domain α] (x y z : α) (H : ideal.is_coprime x y)
(H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z :=
sorry
Kenny Lau (May 23 2020 at 14:24):
Credits to @Ken Lee :
import ring_theory.euclidean_domain
theorem mul_dvd_of_coprime {α : Type} [comm_ring α] (x y z : α) (H : ideal.is_coprime x y)
(H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z :=
begin
obtain ⟨a, b, h⟩ := ideal.is_coprime_def.1 H 1,
rw [← mul_one z, ← h, mul_add],
apply dvd_add,
{ rw [mul_comm z, mul_assoc],
exact dvd_mul_of_dvd_right (mul_dvd_mul_left _ H2) _ },
{ rw [mul_comm b, ← mul_assoc],
exact dvd_mul_of_dvd_left (mul_dvd_mul_right H1 _) _ }
end
Last updated: Dec 20 2023 at 11:08 UTC