Zulip Chat Archive
Stream: Is there code for X?
Topic: not independent of mem span
Scott Morrison (May 29 2021 at 06:34):
Do we have
import linear_algebra.linear_independent
open submodule
variables {ι : Type*}
variables {R : Type*} [ring R]
variables {M : Type*} [add_comm_group M] [module R M]
example (w : set ι) (x : ι) (n : x ∉ w) (v : ι → M) (h : v x ∈ span R (v '' w)) :
¬ linear_independent R v :=
sorry
somewhere?
Scott Morrison (May 29 2021 at 07:07):
lemma linear_independent.not_mem_span_image [nontrivial R] (hv : linear_independent R v) {s : set ι}
{x : ι} (h : x ∉ s) :
v x ∉ submodule.span R (v '' s) :=
begin
have h' : v x ∈ submodule.span R (v '' {x}),
{ rw set.image_singleton,
exact mem_span_singleton_self (v x), },
intro w,
apply linear_independent.ne_zero x hv,
refine disjoint_def.1 (hv.disjoint_span_image _) (v x) h' w,
simpa using h,
end
does it.
Last updated: Dec 20 2023 at 11:08 UTC