Zulip Chat Archive

Stream: Is there code for X?

Topic: not independent of mem span


Scott Morrison (May 29 2021 at 06:34):

Do we have

import linear_algebra.linear_independent

open submodule

variables {ι : Type*}
variables {R : Type*} [ring R]
variables {M : Type*} [add_comm_group M] [module R M]

example (w : set ι) (x : ι) (n : x  w) (v : ι  M) (h : v x  span R (v '' w)) :
  ¬ linear_independent R v :=
sorry

somewhere?

Scott Morrison (May 29 2021 at 07:07):

lemma linear_independent.not_mem_span_image [nontrivial R] (hv : linear_independent R v) {s : set ι}
  {x : ι} (h : x  s) :
  v x  submodule.span R (v '' s) :=
begin
  have h' : v x  submodule.span R (v '' {x}),
  { rw set.image_singleton,
    exact mem_span_singleton_self (v x), },
  intro w,
  apply linear_independent.ne_zero x hv,
  refine disjoint_def.1 (hv.disjoint_span_image _) (v x) h' w,
  simpa using h,
end

does it.


Last updated: Dec 20 2023 at 11:08 UTC