Zulip Chat Archive
Stream: Is there code for X?
Topic: order_iso.map_cInf
Yaël Dillies (Oct 02 2021 at 18:06):
Do we have this or the subgoal anywhere?
import order.conditionally_complete_lattice
variables {α β γ : Type*} [conditionally_complete_lattice α] [conditionally_complete_lattice β]
lemma order_iso.map_cInf' (e : α ≃o β) {s : set α} (hne : s.nonempty) (hbdd : bdd_below s) :
e (Inf s) = Inf (e '' s) :=
begin
rw e.map_cInf hne hbdd,
-- `⊢ (⨅ (x : ↥s), ⇑e ↑x) = Inf (⇑e '' s)`
end
Yaël Dillies (Oct 02 2021 at 21:10):
I did this in the end:
lemma cinfi_subtype {s : set β} {f : β → α} : (⨅ x : s, f x) = Inf (f '' s) :=
begin
rw infi,
congr,
ext,
rw [mem_image, mem_range, set_coe.exists],
simp_rw [subtype.coe_mk, exists_prop],
end
lemma order_iso.map_cInf' (e : α ≃o β) {s : set α} (hne : s.nonempty) (hbdd : bdd_below s) :
e (Inf s) = Inf (e '' s) :=
by rw [e.map_cInf hne hbdd, cinfi_subtype]
Eric Wieser (Oct 03 2021 at 08:30):
IMO docs#order_iso.map_cInf should have been written as the statement you're asking for.
Last updated: Dec 20 2023 at 11:08 UTC