Zulip Chat Archive
Stream: Is there code for X?
Topic: restricted set of equality points is closed
Bhavik Mehta (Aug 21 2022 at 21:20):
lemma is_closed_sep_eq {α β : Type*} [topological_space α] [topological_space β] [t2_space α]
{f g : β → α} {s : set β} (hs : is_closed s)
(hf : continuous_on f s) (hg : continuous_on g s) : is_closed {x ∈ s | f x = g x} :=
is this in mathlib somewhere? I have a proof (using docs#is_closed_eq), but it's pretty unpleasant:
lemma is_closed_sep_eq {α β : Type*} [topological_space α] [topological_space β] [t2_space α]
{f g : β → α} {s : set β} (hs : is_closed s)
(hf : continuous_on f s) (hg : continuous_on g s) : is_closed {x ∈ s | f x = g x} :=
begin
have := is_closed_eq
(continuous_on_iff_continuous_restrict.1 hf) (continuous_on_iff_continuous_restrict.1 hg),
obtain ⟨u, hu, hu'⟩ := is_closed_induced_iff.1 this,
have : s ∩ u = {x ∈ s | f x = g x},
{ ext i,
apply and_congr_right,
rw set.ext_iff at hu',
simp only [mem_preimage, restrict_apply, mem_set_of_eq, set_coe.forall, subtype.coe_mk] at hu',
exact hu' _ },
rw ←this,
apply is_closed.inter hs hu,
end
Anatole Dedecker (Aug 24 2022 at 14:40):
import topology.separation
open set
lemma is_closed_sep_eq {α β : Type*} [topological_space α] [topological_space β] [t2_space α]
{f g : β → α} {s : set β} (hs : is_closed s)
(hf : continuous_on f s) (hg : continuous_on g s) : is_closed {x ∈ s | f x = g x} :=
begin
change is_closed (s ∩ {x | f x = g x}),
rw continuous_on_iff_continuous_restrict at hf hg,
rw [inter_comm, ← subtype.image_preimage_coe],
exact (closed_embedding_subtype_coe hs).is_closed_map _ (is_closed_eq hf hg),
end
Anatole Dedecker (Aug 24 2022 at 14:41):
The key is docs#closed_embedding_subtype_coe
Ruben Van de Velde (Aug 24 2022 at 14:48):
Anatole Dedecker said:
change is_closed (s ∩ {x | f x = g x}),
I hope there's a lemma for that :)
Yaël Dillies (Aug 24 2022 at 14:49):
Yaël Dillies (Aug 24 2022 at 14:50):
Hmm.. it would rather be set.inter_set_of
, but that doesn't exist.
Anatole Dedecker (Aug 24 2022 at 14:53):
Ruben Van de Velde said:
Anatole Dedecker said:
change is_closed (s ∩ {x | f x = g x}),
I hope there's a lemma for that :)
I couldn't find it :(
Anatole Dedecker (Aug 24 2022 at 14:54):
Yaël Dillies said:
Hmm.. it would rather be
set.inter_set_of
, but that doesn't exist.
I would say set.sep_set_of
but that doesn't exist either...
Yaël Dillies (Aug 24 2022 at 14:55):
There's never the sep
of a set_of
in your context, right?
Anatole Dedecker (Aug 24 2022 at 14:56):
Oh yeah forget it :face_palm:
Last updated: Dec 20 2023 at 11:08 UTC