Zulip Chat Archive
Stream: Is there code for X?
Topic: restriction and normalized measure
Pietro Lavino (Aug 19 2024 at 01:54):
i want to formalize a probability measure given another probability measure and a measurable set a, which consists of the restriction of the first measure to a divided by measure of a ( measure of a \neq 0). this is what i have so far, is there an existing solution or a more convenient way to do this).
import Mathlib.Topology.Instances.Real
import Mathlib.Analysis.NormedSpace.FiniteDimension
import Mathlib.Analysis.Convolution
import Mathlib.MeasureTheory.Function.Jacobian
import Mathlib.MeasureTheory.Integral.Bochner
import Mathlib.MeasureTheory.Measure.Lebesgue.Basic
import Mathlib.Analysis.SpecialFunctions.Log.Basic
import Mathlib.Analysis.SpecialFunctions.Log.ENNReal
import Mathlib.Data.ENNReal.Real
import Init.Data.Fin.Basic
import Mathlib.Data.Set.Lattice
import Mathlib.Data.Set.Function
import Mathlib.Analysis.Convex.Basic
import Mathlib.Data.Real.Basic
import Mathlib.Algebra.BigOperators.Ring
import Mathlib.MeasureTheory.Measure.NullMeasurable
import Mathlib.SetTheory.Cardinal.Basic
import Mathlib.Data.Finite.Card
import Mathlib.Analysis.Subadditive
import Mathlib.Analysis.SpecialFunctions.Log.NegMulLog
open MeasureTheory ENNReal Set Function BigOperators Finset
noncomputable def normalized_restriction {α : Type*} {m : MeasurableSpace α} {μ : Measure α} (a : Set α) (ha : MeasurableSet a) (hμa : μ a ≠ 0)(b: Set α): ENNReal := μ ( b ∩ a) / μ a
lemma normalized_empty {α : Type*} {m : MeasurableSpace α} {μ : Measure α} (a : Set α) (ha : MeasurableSet a) (hμa : μ a ≠ 0): normalized_restriction a ha hμa ∅ = 0 := by
unfold normalized_restriction; simp
lemma normalized_restriction_nonneg {α : Type*} {m : MeasurableSpace α} {μ : Measure α} (a : Set α) (ha : MeasurableSet a) (hμa : μ a ≠ 0) (b : Set α): 0 ≤ normalized_restriction a ha hμa b := by
unfold normalized_restriction;simp
noncomputable def normalized_restrict {α : Type*} {m : MeasurableSpace α} {μ : Measure α}(a : Set α) (ha : MeasurableSet a) (hμa : μ a ≠ 0) : Measure α
where
measureOf:= λ s ↦ normalized_restriction a ha hμa s
empty:= by
simp[normalized_empty]
mono := by
intro s t hset
dsimp; unfold normalized_restriction
have : μ (s ∩ a) ≤ μ (t ∩ a) := by
refine OuterMeasureClass.measure_mono μ ?_
· exact Set.inter_subset_inter hset fun ⦃a_1⦄ a => a
exact ENNReal.div_le_div_right this (μ a)
iUnion_nat := by
sorry
m_iUnion := by
sorry
trim_le:= by
Yaël Dillies (Aug 19 2024 at 06:40):
This is docs#ProbabilityTheory.cond
Last updated: May 02 2025 at 03:31 UTC