Zulip Chat Archive
Stream: Is there code for X?
Topic: sInf is minimum
Ira Fesefeldt (Jun 02 2024 at 14:14):
I am searching for a proof of something on the line
theorem sInf_of_finite {α : Type} [CompleteLinearOrder α] {s : Set α} (h_fin : Set.Finite s) (i : α) (P : α → Prop) :
sInf {i ∈ s | P i } ∈ {i ∈ s | P i } := sorry
That is, the infimum on a finite set with a linear order is the minimum of the finite set.
Does something like this exist already?
Ira Fesefeldt (Jun 02 2024 at 14:16):
Nevermind, already found... Set.Nonempty.csInf_mem
Kevin Buzzard (Jun 02 2024 at 14:17):
Your theorem as it stands is false BTW:
import Mathlib
theorem sInf_of_finite {α : Type} [CompleteLinearOrder α] {s : Set α} (h_fin : Set.Finite s) (i : α) (P : α → Prop) :
sInf {i ∈ s | P i } ∈ {i ∈ s | P i } := sorry
example : False := by
have := sInf_of_finite (α := Fin 1) (s := ∅) (by simp) 0 (fun _ ↦ False)
aesop
Ira Fesefeldt (Jun 02 2024 at 14:27):
Yes, nonempty is missing
Last updated: May 02 2025 at 03:31 UTC