Zulip Chat Archive
Stream: Is there code for X?
Topic: sSup in closure
Ira Fesefeldt (Jun 20 2024 at 10:30):
I am still rather novice in topology, but I believe something like this holds? If yes, is there a proof for this in mathlib?
import Mathlib
lemma sSup_in_closure (s s' : Set ℝ) (h : s ⊆ s'): sSup s ∈ closure s' := by sorry
Yaël Dillies (Jun 20 2024 at 10:31):
You need to assume s
is nonempty and bounded above
Ira Fesefeldt (Jun 20 2024 at 10:31):
Oh, yes.
Ira Fesefeldt (Jun 20 2024 at 10:33):
import Mathlib
lemma sSup_in_closure (s s' : Set ENNReal) (h : s ⊆ s'): sSup s ∈ closure s' := by sorry
Do I also need one of the assumptions if the domain is a CL?
Ira Fesefeldt (Jun 21 2024 at 05:16):
The answer is yes, I need nonemptyness:
import Mathlib
lemma sSup_in_closure (s s' : Set ENNReal) (h_nonempty : Set.Nonempty s) (h : s ⊆ s'): sSup s ∈ closure s' := by
apply Set.mem_of_subset_of_mem (closure_mono h)
exact sSup_mem_closure h_nonempty
Last updated: May 02 2025 at 03:31 UTC