Zulip Chat Archive
Stream: Is there code for X?
Topic: some lemmas about preimage and image in schemes
Kenny Lau (Oct 06 2025 at 00:03):
import Mathlib
universe u
namespace AlgebraicGeometry.Scheme
open CategoryTheory
@[simp] lemma image_comp {X Y Z : Scheme.{u}} {f : X ⟶ Y} {g : Y ⟶ Z}
[IsOpenImmersion f] [IsOpenImmersion g] (U : X.Opens) :
(f ≫ g) ''ᵁ U = g ''ᵁ f ''ᵁ U :=
TopologicalSpace.Opens.ext <| Set.image_comp g.base f.base (U : Set X)
lemma image_id' {X : Scheme.{u}} {f : X ⟶ X} [IsOpenImmersion f] (hf : f = 𝟙 X) {U : X.Opens} :
f ''ᵁ U = U := by
subst hf; exact TopologicalSpace.Opens.ext <| Set.image_id _
@[simp] lemma preimage_inv {X Y : Scheme.{u}} {f : X ≅ Y} (V : Y.Opens) :
f.inv ''ᵁ V = f.hom ⁻¹ᵁ V := by
rw [← f.hom.preimage_image_eq (f.inv ''ᵁ V), ← image_comp, image_id' (by simp)]
end AlgebraicGeometry.Scheme
Last updated: Dec 20 2025 at 21:32 UTC