Zulip Chat Archive
Stream: Is there code for X?
Topic: submonoid.map_closure
Nikolas Kuhn (Jul 20 2022 at 12:05):
Do we have some result stating that the image of a submonoid generated by a set s
under a monoid homomorphism is equal to the submonoid generated by the image of s
?
The statement should be something like this:
import group_theory.submonoid.operations
lemma submonoid.map_closure {M N : Type} [monoid M] [monoid N] (f: M →* N) (s : set M) :
(submonoid.closure s).map f = (submonoid.closure $ f '' s) :=
sorry
Andrew Yang (Jul 20 2022 at 12:20):
I cannot find it either, but there is a one-liner
lemma submonoid.map_closure {M N : Type} [monoid M] [monoid N] (f: M →* N) (s : set M) :
(submonoid.closure s).map f = (submonoid.closure $ f '' s) :=
(galois_connection.l_comm_of_u_comm (submonoid.gi M).gc (submonoid.gi N).gc (submonoid.gc_map_comap f)
(@set.image_preimage _ _ f) (λ _, rfl)).symm
Eric Wieser (Jul 20 2022 at 12:37):
We have two versions of this for submodules, docs#submodule.map_span and docs#submodule.span_image
Last updated: Dec 20 2023 at 11:08 UTC