Zulip Chat Archive
Stream: Is there code for X?
Topic: summable.single_le_tsum
Damiano Testa (Mar 04 2022 at 13:56):
Dear All,
in analogy with docs#finset.single_le_sum, I was looking for the similar statement for infinite sums, but could not find it. Is the lemma below (or something similar) in mathlib?
Thanks!
import topology.algebra.infinite_sum
namespace summable
variables {α β : Type*} [ordered_add_comm_group α] [topological_space α]
[order_closed_topology α] [topological_add_group α] {f : β → α}
lemma single_le_tsum (a : β) (fs : summable f) (f0 : ∀ {x}, 0 ≤ f x) :
f a ≤ ∑' x, f x :=
begin
classical,
refine (le_add_of_nonneg_right (tsum_nonneg (λ z, _))).trans (tsum_ite_eq_extract fs a).ge,
split_ifs,
exacts [rfl.le, f0]
end
end summable
Sebastien Gouezel (Mar 04 2022 at 14:01):
Damiano Testa (Mar 04 2022 at 14:05):
looks like it's exactly what I need, thanks!
Damiano Testa (Mar 04 2022 at 14:07):
Indeed, this works! Thanks!
lemma single_le_tsum (a : β) (fs : summable f) (f0 : ∀ {x}, 0 ≤ f x) :
f a ≤ ∑' x, f x :=
le_tsum fs a (λ s hs, f0)
Last updated: Dec 20 2023 at 11:08 UTC