Zulip Chat Archive
Stream: Is there code for X?
Topic: union distributes over nonempty bUnion
Rémi Bottinelli (Feb 14 2023 at 13:40):
Hey, I'm looking for this:
example {α β : Type*} (s : set α) (S : set β) (hS : S.nonempty) (f : β → set α) :
s ∪ (⋃ t ∈ S, f t) = ⋃ t ∈ S, s ∪ (f t) := by library_search [hS]
What's the cleanest way to get it? Thanks!
Eric Wieser (Feb 14 2023 at 13:47):
lemma set.union_bUnion {α β : Type*} (s : set α) (S : set β) (hS : S.nonempty) (f : β → set α) :
s ∪ (⋃ t ∈ S, f t) = ⋃ t ∈ S, s ∪ (f t) :=
begin
letI := hS.coe_sort,
simpa only [set.Union_coe_set, subtype.coe_mk] using set.union_Union s (λ x : S, f x),
end
Rémi Bottinelli (Feb 14 2023 at 13:57):
Thanks, I hadn't found union_Union
! Would union_bUnion
belong in data.set.lattice
?
Last updated: Dec 20 2023 at 11:08 UTC