Zulip Chat Archive
Stream: Is there code for X?
Topic: v % 2 ≠ (v + 1) % 2
Iván Renison (Oct 25 2023 at 12:25):
Is there any theorem that says this?
theorem aux (n : ℕ) : n % 2 ≠ (n + 1) % 2 := by
sorry
Ruben Van de Velde (Oct 25 2023 at 12:33):
A bit annoying:
theorem aux (n : ℕ) : n % 2 ≠ (n + 1) % 2 := by
rw [Nat.add_mod]
have := Nat.mod_lt n two_pos
interval_cases n % 2 <;> simp
Ruben Van de Velde (Oct 25 2023 at 12:36):
Maybe more conceptual? Not sure
theorem aux' (n : ℕ) : n % 2 = if Even n then 0 else 1 := by
simp_rw [Nat.even_iff]
have := Nat.mod_lt n two_pos
interval_cases n % 2 <;> simp
theorem aux (n : ℕ) : n % 2 ≠ (n + 1) % 2 := by
rw [aux', aux']
simp_rw [Nat.even_add_one]
split_ifs <;> simp
Eric Wieser (Oct 25 2023 at 12:42):
theorem aux (n : ℕ) : n % 2 ≠ (n + 1) % 2 := by
refine (ZMod.eq_iff_modEq_nat 2).not.mp ?_
simp
Iván Renison (Oct 27 2023 at 18:54):
Thanks
Last updated: Dec 20 2023 at 11:08 UTC