Zulip Chat Archive
Stream: Is there code for X?
Topic: weaker conditions for showing algebraically closed
Joseph Hua (Jan 19 2022 at 16:38):
import field_theory.algebraic_closure
namespace is_alg_closed
open polynomial
lemma of_monic_nat_degree_ne_zero_exists_root {k : Type*} [field k]
(H : ∀ p : polynomial k, p.monic → nat_degree p ≠ 0 → ∃ x, p.eval x = 0) :
is_alg_closed k :=
begin
apply of_exists_root,
intros p hmonic hirr,
by_cases hdeg : nat_degree p = 0,
{
rw monic.degree_eq_zero_iff_eq_one hmonic at hdeg,
rw hdeg at hirr,
exfalso,
apply hirr.1,
exact ⟨ 1 , rfl ⟩,
},
apply H p hmonic hdeg,
end
lemma of_nat_degree_ne_zero_exists_root {k : Type*} [field k]
(H : ∀ p : polynomial k, nat_degree p ≠ 0 → ∃ x, p.eval x = 0) :
is_alg_closed k :=
of_monic_nat_degree_ne_zero_exists_root $ λ _ _ hdeg, H _ hdeg
end is_alg_closed
Worth a PR? The original says if any irreducible monic polynomial has a root its algebraically closed. The degree turned out to be the only useful part of irreducible in my use case
Eric Rodriguez (Jan 19 2022 at 19:32):
I'd make another version of of_exists_root
with both the current conditions and nat_degree p ≠ 0
. That would be the real strengthening
Joseph Hua (Jan 19 2022 at 21:33):
aha makes sense. ill do that then
Last updated: Dec 20 2023 at 11:08 UTC