Zulip Chat Archive

Stream: Is there code for X?

Topic: weaker conditions for showing algebraically closed


Joseph Hua (Jan 19 2022 at 16:38):

import field_theory.algebraic_closure

namespace is_alg_closed

open polynomial

lemma of_monic_nat_degree_ne_zero_exists_root {k : Type*} [field k]
  (H :  p : polynomial k, p.monic  nat_degree p  0   x, p.eval x = 0) :
  is_alg_closed k :=
begin
  apply of_exists_root,
  intros p hmonic hirr,
  by_cases hdeg : nat_degree p = 0,
  {
    rw monic.degree_eq_zero_iff_eq_one hmonic at hdeg,
    rw hdeg at hirr,
    exfalso,
    apply hirr.1,
    exact  1 , rfl ⟩,
  },
  apply H p hmonic hdeg,
end

lemma of_nat_degree_ne_zero_exists_root {k : Type*} [field k]
  (H :  p : polynomial k, nat_degree p  0   x, p.eval x = 0) :
  is_alg_closed k :=
of_monic_nat_degree_ne_zero_exists_root $ λ _ _ hdeg, H _ hdeg

end is_alg_closed

Worth a PR? The original says if any irreducible monic polynomial has a root its algebraically closed. The degree turned out to be the only useful part of irreducible in my use case

Eric Rodriguez (Jan 19 2022 at 19:32):

I'd make another version of of_exists_root with both the current conditions and nat_degree p ≠ 0. That would be the real strengthening

Joseph Hua (Jan 19 2022 at 21:33):

aha makes sense. ill do that then


Last updated: Dec 20 2023 at 11:08 UTC