Zulip Chat Archive

Stream: Is there code for X?

Topic: whiskering adjunctions


Adam Topaz (Nov 25 2021 at 19:54):

I assume we don't have the following, but I figured it doesn't hurt to check in case I missed it:

import category_theory.whiskering
import category_theory.adjunction

namespace category_theory.adjunction

open category_theory

variables (C : Type*) {D E : Type*} [category C] [category D] [category E]
  {F : D  E} {G : E  D}

def whiskering_right (adj : F  G) :
  ((whiskering_right C D E).obj F)  ((whiskering_right C E D).obj G) :=
mk_of_unit_counit
{ unit :=
  { app := λ X, (functor.right_unitor _).inv 
      whisker_left X adj.unit  (functor.associator _ _ _).inv,
    naturality' := by { intros, ext, dsimp, simp } },
  counit :=
  { app := λ X, (functor.associator _ _ _).hom 
      whisker_left X adj.counit  (functor.right_unitor _).hom,
    naturality' := by { intros, ext, dsimp, simp } },
  left_triangle' := by { ext, dsimp, simp },
  right_triangle' := by { ext, dsimp, simp } }

end category_theory.adjunction

Adam Topaz (Nov 26 2021 at 04:52):

#10495


Last updated: Dec 20 2023 at 11:08 UTC