Zulip Chat Archive
Stream: Is there code for X?
Topic: whiskering adjunctions
Adam Topaz (Nov 25 2021 at 19:54):
I assume we don't have the following, but I figured it doesn't hurt to check in case I missed it:
import category_theory.whiskering
import category_theory.adjunction
namespace category_theory.adjunction
open category_theory
variables (C : Type*) {D E : Type*} [category C] [category D] [category E]
{F : D ⥤ E} {G : E ⥤ D}
def whiskering_right (adj : F ⊣ G) :
((whiskering_right C D E).obj F) ⊣ ((whiskering_right C E D).obj G) :=
mk_of_unit_counit
{ unit :=
{ app := λ X, (functor.right_unitor _).inv ≫
whisker_left X adj.unit ≫ (functor.associator _ _ _).inv,
naturality' := by { intros, ext, dsimp, simp } },
counit :=
{ app := λ X, (functor.associator _ _ _).hom ≫
whisker_left X adj.counit ≫ (functor.right_unitor _).hom,
naturality' := by { intros, ext, dsimp, simp } },
left_triangle' := by { ext, dsimp, simp },
right_triangle' := by { ext, dsimp, simp } }
end category_theory.adjunction
Adam Topaz (Nov 26 2021 at 04:52):
Last updated: Dec 20 2023 at 11:08 UTC