Zulip Chat Archive
Stream: Is there code for X?
Topic: x generates the function field F(x)
Michael Stoll (Jun 23 2024 at 17:50):
I'm looking for a simple proof of the following:
import Mathlib
open scoped IntermediateField
example {F} [Field F] : F⟮RatFunc.X (K := F)⟯ = ⊤ := sorry
This looks like it should be in Mathlib, but apply?
does not give anything useful, and
@loogle IntermediateField.adjoin, RatFunc.X
loogle (Jun 23 2024 at 17:50):
:shrug: nothing found
Michael Stoll (Jun 23 2024 at 18:21):
import Mathlib
open scoped IntermediateField
example {F} [Field F] : F⟮RatFunc.X (K := F)⟯ = ⊤ := by
refine IntermediateField.ext fun a ↦ ⟨fun _ ↦ trivial, fun _ ↦ ?_⟩
rw [IntermediateField.mem_adjoin_simple_iff]
have (p : Polynomial F) : Polynomial.aeval X p = algebraMap (Polynomial F) (RatFunc F) p := by
rw [← RatFunc.algebraMap_X, Polynomial.aeval_algebraMap_apply, Polynomial.aeval_X_left_apply]
refine ⟨a.num, a.denom, ?_⟩
simp only [this, num_div_denom]
Is there an easier way?
Last updated: May 02 2025 at 03:31 UTC