Zulip Chat Archive
Stream: Is there code for X?
Topic: x^y=z from y.log(x)=log(z)
Kevin Buzzard (Aug 09 2023 at 11:28):
Do we really not have this:
import Mathlib
open Real
example (x y z : ℝ) (hx : 0 < x) (hz : 0 < z) (h : y * log x = log z) : x ^ y = z := sorry
Did I slip up somewhere?
Kevin Buzzard (Aug 09 2023 at 12:06):
import Mathlib
open Real
example (x y z : ℝ) (hx : 0 < x) (hz : 0 < z) (h : y * log x = log z) : x ^ y = z := by
rw [← log_rpow hx] at h
apply_fun Real.exp at h
rwa [exp_log, exp_log hz] at h
apply rpow_pos_of_pos hx
Kevin Buzzard (Aug 09 2023 at 12:22):
Eric Wieser (Aug 09 2023 at 12:27):
example (x y z : ℝ) (hx : 0 < x) (hz : 0 < z) (h : y * log x = log z) : x ^ y = z :=
log_injOn_pos (rpow_pos_of_pos hx _) hz <| log_rpow hx _ |>.trans h
Eric Wieser (Aug 09 2023 at 12:30):
While we're on the subject of rpow
, #6470 adds some nearby missing lemmas
Last updated: Dec 20 2023 at 11:08 UTC