Zulip Chat Archive

Stream: condensed mathematics

Topic: AB5


Adam Topaz (Jun 08 2022 at 20:17):

Any takers for

-- Axiom AB5 for `AddCommGroup`
theorem exact_colim_map_iff_of_is_filtered
  (F G H : J  AddCommGroup.{u}) (η : F  G) (γ : G  H) :
  exact (limits.colim_map η) (limits.colim_map γ)  ( j, exact (η.app j) (γ.app j)) :=
sorry

??? If so, take a look at for_mathlib/exact_filtered_colimits

Adam Topaz (Jun 08 2022 at 20:45):

(condensed/ab5 has a proof of ab5 for condensed ab using that theorem)

Peter Scholze (Jun 08 2022 at 22:12):

iff not if?

Adam Topaz (Jun 08 2022 at 22:18):

Oops

Adam Topaz (Jun 08 2022 at 22:25):

fixed

Adam Topaz (Jun 08 2022 at 22:26):

From for_mathlib/exact_filtered_colimits

-- Axiom AB5 for `AddCommGroup`
theorem exact_colim_of_exact_of_is_filtered
  (F G H : J  AddCommGroup.{u}) (η : F  G) (γ : G  H) :
  ( j, exact (η.app j) (γ.app j))  exact (limits.colim_map η) (limits.colim_map γ) :=
sorry

Adam Topaz (Jun 08 2022 at 22:27):

The condensed proof is fixed as well.

Adam Topaz (Jun 08 2022 at 23:46):

Alright I was embarrassed enough that I had to prove exact_colim_of_exact_of_is_filtered...


Last updated: Dec 20 2023 at 11:08 UTC