Zulip Chat Archive
Stream: condensed mathematics
Topic: AB5
Adam Topaz (Jun 08 2022 at 20:17):
Any takers for
-- Axiom AB5 for `AddCommGroup`
theorem exact_colim_map_iff_of_is_filtered
(F G H : J ⥤ AddCommGroup.{u}) (η : F ⟶ G) (γ : G ⟶ H) :
exact (limits.colim_map η) (limits.colim_map γ) ↔ (∀ j, exact (η.app j) (γ.app j)) :=
sorry
??? If so, take a look at for_mathlib/exact_filtered_colimits
Adam Topaz (Jun 08 2022 at 20:45):
(condensed/ab5
has a proof of ab5 for condensed ab using that theorem)
Peter Scholze (Jun 08 2022 at 22:12):
iff not if?
Adam Topaz (Jun 08 2022 at 22:18):
Oops
Adam Topaz (Jun 08 2022 at 22:25):
fixed
Adam Topaz (Jun 08 2022 at 22:26):
From for_mathlib/exact_filtered_colimits
-- Axiom AB5 for `AddCommGroup`
theorem exact_colim_of_exact_of_is_filtered
(F G H : J ⥤ AddCommGroup.{u}) (η : F ⟶ G) (γ : G ⟶ H) :
(∀ j, exact (η.app j) (γ.app j)) → exact (limits.colim_map η) (limits.colim_map γ) :=
sorry
Adam Topaz (Jun 08 2022 at 22:27):
The condensed proof is fixed as well.
Adam Topaz (Jun 08 2022 at 23:46):
Alright I was embarrassed enough that I had to prove exact_colim_of_exact_of_is_filtered
...
Last updated: Dec 20 2023 at 11:08 UTC