Zulip Chat Archive
Stream: lean4
Topic: Dependent version of congr_arg₂
Geoffrey Irving (Aug 13 2024 at 16:24):
Ignoring the dependent types this would be just simp [Vector.toList_length]
, but alas that does nothing. How can I prove this?
import Mathlib.Data.Vector.Basic
variable {α β : Type}
lemma congr_arg₂_vector (f : (n : ℕ) → Vector α n → β) (n : ℕ) (y : Vector α n) :
∀ h, f y.toList.length ⟨y.toList, h⟩ = f n y := by
sorry
Johan Commelin (Aug 13 2024 at 18:51):
Does cases y
help?
Eric Wieser (Aug 13 2024 at 19:43):
lemma congr_arg₂_vector (f : (n : ℕ) → Mathlib.Vector α n → β) (n : ℕ) (y : Mathlib.Vector α n) (h) :
f y.toList.length ⟨y.toList, h⟩ = f n y := by
obtain ⟨y, rfl⟩ := y
rfl
Last updated: May 02 2025 at 03:31 UTC