Zulip Chat Archive
Stream: lean4
Topic: Help prove a Lemma in Lean 4
Kajani Kaunda (Aug 16 2024 at 19:27):
Hello,
I need help proving the following Lemma. The lemma tries to prove that every prime > 3 is not divisible by 2. An elementally task for a seasoned Leaner!
lemma theo1 (p : ℕ) (hp : p > 3) (hprime : Nat.Prime p) : ¬ (2 ∣ p) := by
Ruben Van de Velde (Aug 16 2024 at 21:32):
First step:
import Mathlib
lemma theo1 (p : ℕ) (hp : p > 3) (hprime : Nat.Prime p) : ¬ (2 ∣ p) := by
-- rw? finds:
rw [propext (Nat.dvd_prime hprime)]
(Not sure why it puts propext
in there)
Kajani Kaunda (Aug 17 2024 at 10:58):
Ruben Van de Velde said:
First step:
import Mathlib lemma theo1 (p : ℕ) (hp : p > 3) (hprime : Nat.Prime p) : ¬ (2 ∣ p) := by -- rw? finds: rw [propext (Nat.dvd_prime hprime)]
(Not sure why it puts
propext
in there)
Looks like some kind of transformation ...
Ruben Van de Velde (Aug 17 2024 at 13:02):
No, I know what it does, but I don't know why rw?
suggests it
Kajani Kaunda (Aug 17 2024 at 13:31):
Ruben Van de Velde said:
First step:
import Mathlib lemma theo1 (p : ℕ) (hp : p > 3) (hprime : Nat.Prime p) : ¬ (2 ∣ p) := by -- rw? finds: rw [propext (Nat.dvd_prime hprime)]
(Not sure why it puts
propext
in there)
Thank you very much for the code. I am working on a certain known result about primes. Proof that all primes > 3 can be expressed in the form 6n - 1 or 6n + 1.
Kajani Kaunda (Aug 17 2024 at 13:32):
So this result was the first step. I am new to lean so I have kind of dived into the deep end ...
Kajani Kaunda (Aug 17 2024 at 13:32):
:smile:
Kim Morrison (Aug 18 2024 at 00:03):
Ruben Van de Velde said:
No, I know what it does, but I don't know why
rw?
suggests it
Good question. @Ruben Van de Velde, do you want to open an issue for that? We should try to fix it at some point (it shouldn't be hard, PR welcome :-).
Ruben Van de Velde (Aug 18 2024 at 08:23):
https://github.com/leanprover/lean4/issues/5082
Last updated: May 02 2025 at 03:31 UTC