Zulip Chat Archive
Stream: lean4
Topic: claude gets stuck
Jared green (Aug 22 2024 at 13:53):
i tried getting claude to solve this(trying to prove c1), but it got stuck. i also got a confusing type error in rep2:
import Init.Data.List
import Init.PropLemmas
import Mathlib.Algebra.BigOperators.Group.List
import Mathlib.Data.List.Dedup
import Mathlib.Data.List.Pairwise
import Mathlib.Data.List.Join
import Mathlib.Data.List.Basic
import Mathlib.Data.List.Defs
import Mathlib.Data.List.Infix
import Mathlib.Data.List.Lattice
import Mathlib.Data.List.Lemmas
import Mathlib.Data.Bool.AllAny
import Mathlib.Data.Bool.Basic
import Mathlib.Logic.Basic
import Batteries.Data.List.Lemmas
import Aesop
open Classical
variable {α : Type}[h : DecidableEq α]
inductive normalizable α (pred : α -> Prop)
where
| atom : α -> (normalizable α pred)
| And : (normalizable α pred) -> (normalizable α pred) -> normalizable α pred
| Or : (normalizable α pred) -> (normalizable α pred) -> normalizable α pred
| Not : normalizable α pred -> normalizable α pred
deriving DecidableEq
namespace normalizable
@[reducible]
def toProp (n : normalizable α pred) : Prop :=
match n with
| atom a => pred a
| And a b => toProp a ∧ toProp b
| Or a b => (toProp a) ∨ toProp b
| Not i => ¬(toProp i)
def wToProp (w : Bool × normalizable α pred) : Prop :=
if w.fst then toProp w.snd else ¬(toProp w.snd)
def sToProp (s : List (Bool × normalizable α pred)) : Prop :=
s.all (fun x => wToProp x)
def gToProp (g : List (List (Bool × normalizable α pred))) : Prop :=
g.any (fun x => sToProp x)
def nToProp (n : List (List (List (Bool × normalizable α pred)))) : Prop :=
n.all (fun x => gToProp x)
def fToProp (n : List (List (List (normalizable α pred)))) : Prop :=
n.all (fun x => x.any (fun y => y.all (fun z => toProp z)))
theorem all_and : List.all ( a ++ b) c <-> List.all a c ∧ List.all b c :=
by
simp
theorem any_erase :∀ l : List b,∀ a: b -> Prop,
∀ s : b,s ∈ l -> ¬ (a s) -> (List.any l a <-> List.any (List.erase l s) a) :=
by
sorry
theorem any_filter : ∀ s : a -> Bool, ∀ l:List a, l.any s <-> (l.filter s).any s :=
by
sorry
theorem all_filter (s t : a -> Bool) : ∀ l : List a, l.all s -> (l.filter t).all s :=
by
sorry
theorem any_filter_imp (s t : a -> Bool): (∀ x : a, ¬ (s x) -> ¬ (t x)) -> ∀ l : List a,l.any t <-> (l.filter s).any t :=
by
sorry
theorem property1 : ∀ n : List (List (List (Bool × normalizable α pred))),
∀ g : List (List (Bool × normalizable α pred)), g ∈ n ->
∀ s : List (Bool × normalizable α pred), s ∈ g ->
∀ i : Bool × normalizable α pred, (nToProp n -> sToProp s -> wToProp i) ->
(nToProp n -> (sToProp s <-> sToProp (s.concat i))) :=
by
sorry
theorem property2 : ∀ n : List (List (List (Bool × normalizable α pred))),
∀ g : List (List (Bool × normalizable α pred)), g ∈ n ->
∀ s : List (Bool × normalizable α pred), s ∈ g ->
((nToProp n -> ¬(sToProp s)) -> nToProp n -> (gToProp g <-> gToProp (g.erase s))) :=
by
sorry
def bcompatible (s : List (Bool × normalizable α pred)) (t : List (Bool × normalizable α pred)) : Bool :=
s.all (fun x => t.all (fun y => x.snd == y.snd -> x.fst == y.fst))
theorem compatibility :∀ a b : List (Bool × normalizable α pred), (¬ bcompatible a b = true) -> ¬(sToProp a ∧ sToProp b) :=
by
sorry
theorem rule1 : ∀ n : List (List (List (Bool × normalizable α pred))),
∀ g : List (List (Bool × normalizable α pred)), g ∈ n ->
∀ s : List (Bool × normalizable α pred), s ∈ g ->
∀ v : Bool × normalizable α pred, ¬(v ∈ s) ->
(∃ h : List (List (Bool × normalizable α pred)), h ∈ n ∧
∀ t : List (Bool × normalizable α pred), t ∈ h ->
bcompatible t s -> v ∈ t) ->
nToProp n -> sToProp s -> wToProp v :=
by
sorry
theorem rule2 : ∀ n : List (List (List (Bool × normalizable α pred))),
∀ g : List (List (Bool × normalizable α pred)), g ∈ n ->
∀ s : List (Bool × normalizable α pred),
(∃ h : List (List (Bool × normalizable α pred)), h ∈ n ∧
∀ t : List (Bool × normalizable α pred), t ∈ h ->
¬(bcompatible s t)) ->
nToProp n -> ¬(sToProp s) :=
by
sorry
theorem op1 : ∀ n : List (List (List (Bool × normalizable α pred))),
∀ g h : List (List (Bool × normalizable α pred)), g ∈ n ∧ h ∈ n ->
nToProp n -> (gToProp g <-> gToProp (g.filter (fun x => h.any (fun y => bcompatible x y )))) :=
by
sorry
@[reducible]
def interl (l : List (List a)) [DecidableEq a] : List a :=
match l with
| [] => []
| a :: [] => a
| (a :: as) => List.inter a (interl as)
theorem interl_all (s : a -> Prop) : ∀ l : List (List a),
l.any (fun x => x.all (fun y => s y)) -> ∀ b ∈ interl l, s b :=
by
sorry
theorem interl_all_filter (s : a -> Prop)(t : List a -> Prop) : (∀ x : List a, ¬ t x -> ¬(x.all fun y => s y))
-> ∀ l : List (List a), (l.any (fun x => x.all (fun y => s y))
-> ∀ b ∈ interl (l.filter (fun x => t x)), s b) :=
by
sorry
theorem forall_mem_or {b : a -> Prop}{c : a -> Prop}{e : a -> Prop}: (∀ f, (b f ∨ c f) -> e f) <-> (∀ f, b f -> e f) ∧ (∀ f, c f -> e f ) :=
by
sorry
theorem interl_filter_filter (d : a -> Prop)(e : List a -> Prop):
∀ b : a,∀ c : List (List a),
b ∈ interl ((c.filter (fun x: List a => e x)).map (fun x => x.filter (fun y : a => (d y) )))
-> b ∈ interl (c.filter fun x => e x) :=
by
sorry
theorem op2 : ∀ n : List (List (List (Bool × normalizable α pred))),
∀ g h : List (List (Bool × normalizable α pred)), h ∈ n
-> g.all (fun x => h.any (fun y => bcompatible x y))
-> nToProp n
-> (gToProp g
<-> gToProp (g.map (fun x =>
x.append (interl ((h.filter
(fun y => bcompatible x y)).map
(fun y => y.filter (fun z => z ∉ x))))))) :=
by
sorry
theorem rule3 : ∀ n : List (List (List (Bool × normalizable α pred))), [] ∈ n -> ¬(nToProp n) :=
by
sorry
theorem rep1 : ∀ n : List (List (List (Bool × normalizable α pred))),
∀ g : List (List (Bool × normalizable α pred)), g ∈ n ->
∀ s t : List (Bool × normalizable α pred), s ∈ g ->
(nToProp n -> (sToProp s <-> sToProp t) ) ->
(nToProp n -> (gToProp g <-> gToProp (g.replace s t))) :=
by
sorry
theorem rep2 : ∀ n : List (List (List (Bool × normalizable α pred))),
∀ g : List (List (Bool × normalizable α pred)), g ∈ n ->
(nToProp n -> (gToProp g <-> gToProp h)) -> (nToProp n <-> nToProp (n.replace g h)) :=
by
intro n g h hg hngh
constructor
intro hn
unfold nToProp
simp
intro x hx
unfold nToProp at hn
simp at hn
have hxx : x = h ∨ x ∈ n := by {
apply mem_replace_or_mem g h x n
convert hx
}
cases' (hxx) with hxh hxn
rw [hxh]
unfold nToProp at hngh
simp at hngh
have hgh := hngh hn
rw [← hgh]
apply hn
exact hg
apply hn
exact hxn
intro hn
unfold nToProp
simp
intro x hx
unfold nToProp at hn
simp at hn
cases' Classical.em (x = g) with hxg hxng
rw [hxg]
rw [iff_def'] at hngh
rw [imp_and] at hngh
obtain ⟨ hnghl,hnghr⟩ := hngh
apply hnghl
unfold nToProp
simp
intro y hy
cases' Classical.em (y = g) with hyg hyng
rw [hyg]
apply hn
convert mem_replace_of_eq g h n hg --this should not expect a g = h
sorry
apply hn
rw [← ne_eq] at hyng
convert mem_replace_of_mem_of_ne_r g h y n hy hyng
apply hn
convert mem_replace_of_eq g h n hg
have hgx := mem_replace_of_mem_of_ne_r g h x n hx hxng
apply hn
convert hgx
theorem c1 : ∀ n : List (List (List (Bool × normalizable α pred))),
∀ g : List (List (Bool × normalizable α pred)), g ∈ n ->
∀ s : List (Bool × normalizable α pred), s ∈ g ->
∀ w : Bool × normalizable α pred, ¬(w ∈ s) ->
(nToProp n -> (sToProp s -> wToProp w)) ->
∃ t : List (Bool × normalizable α pred),
(List.Subset s t) ∧ ¬(w ∈ t) ∧
(nToProp n -> (sToProp s <-> sToProp t)) ∧
∃ h i : List (List (Bool × normalizable α pred)),
h ∈ n ∧ ¬(h = g) ∧ (nToProp n -> (gToProp h <-> gToProp i)) ∧
∀ u : List (Bool × normalizable α pred), u ∈ i ->
(bcompatible t u) -> w ∈ u :=
by
intro n g hg s hs w hw hhw
by_contra ht
have h_rule1 := rule1 n g hg s hs w hw
--i didnt get much more(that was useful) than this out of it
Jared green (Aug 23 2024 at 12:53):
the theorems rep2 and c1 are true, but i cant prove them at this part of my file.
Chris Bailey (Aug 24 2024 at 01:17):
You will probably need to shrink this way down (like >10x) and ask a specific question to get help. Many of the people here are very generous with their time, but you have to meet them in the middle.
Last updated: May 02 2025 at 03:31 UTC