Zulip Chat Archive

Stream: mathlib4

Topic: !4#3510 CategoryTheory.Simple


Jeremy Tan (Apr 18 2023 at 18:25):

!4#3510 Two errors remain in this file:

theorem indecomposable_of_simple (X : C) [Simple X] : Indecomposable X :=
  Simple.not_isZero X, fun Y Z i => by
    refine' or_iff_not_imp_left.mpr fun h => _
    rw [IsZero.iff_isSplitMono_eq_zero (biprod.inl : Y  Y  Z)] at h
    change biprod.inl  0 at h
    rw [ Simple.mono_isIso_iff_nonzero biprod.inl] at h -- here
    · rwa [biprod.is_iso_inl_iff_is_zero] at h
    · exact simple.of_iso i.symm
    · infer_instance
Simple.lean:214:10
failed to synthesize instance
  Simple (?m.27073  ?m.27074)
Simple.lean:214:8
tactic 'rewrite' failed, equality or iff proof expected
  ?m.28551
C: Type u
inst✝³: Category C
inst✝²: Preadditive C
inst✝¹: HasBinaryBiproducts C
X: C
inst: Simple X
YZ: C
i: X  Y  Z
h: biprod.inl  0
 IsZero Z

how do I fix them? (:eta: doesn't work)

Jeremy Tan (Apr 18 2023 at 20:09):

(.)

Jürgen Bergmann (Apr 26 2023 at 15:55):

@Jeremy Tan This seems to work:

theorem indecomposable_of_simple (X : C) [Simple X] : Indecomposable X :=
  Simple.not_isZero X, fun Y Z i => by
    refine' or_iff_not_imp_left.mpr fun h => _
    rw [IsZero.iff_isSplitMono_eq_zero (biprod.inl : Y  Y  Z)] at h
    change biprod.inl  0 at h
    have : Simple (Y  Z) := by exact Simple.of_iso i.symm
    rw [ Simple.mono_isIso_iff_nonzero biprod.inl] at h
    rwa [Biprod.isIso_inl_iff_isZero] at h

Jeremy Tan (Apr 26 2023 at 15:55):

@Jürgen Bergmann I already committed that fix, thanks


Last updated: Dec 20 2023 at 11:08 UTC