Zulip Chat Archive
Stream: mathlib4
Topic: !4#3510 CategoryTheory.Simple
Jeremy Tan (Apr 18 2023 at 18:25):
!4#3510 Two errors remain in this file:
theorem indecomposable_of_simple (X : C) [Simple X] : Indecomposable X :=
⟨Simple.not_isZero X, fun Y Z i => by
refine' or_iff_not_imp_left.mpr fun h => _
rw [IsZero.iff_isSplitMono_eq_zero (biprod.inl : Y ⟶ Y ⊞ Z)] at h
change biprod.inl ≠ 0 at h
rw [← Simple.mono_isIso_iff_nonzero biprod.inl] at h -- here
· rwa [biprod.is_iso_inl_iff_is_zero] at h
· exact simple.of_iso i.symm
· infer_instance⟩
Simple.lean:214:10
failed to synthesize instance
Simple (?m.27073 ⊞ ?m.27074)
Simple.lean:214:8
tactic 'rewrite' failed, equality or iff proof expected
?m.28551
C: Type u
inst✝³: Category C
inst✝²: Preadditive C
inst✝¹: HasBinaryBiproducts C
X: C
inst✝: Simple X
YZ: C
i: X ≅ Y ⊞ Z
h: biprod.inl ≠ 0
⊢ IsZero Z
how do I fix them? ( doesn't work)
Jeremy Tan (Apr 18 2023 at 20:09):
(.)
Jürgen Bergmann (Apr 26 2023 at 15:55):
@Jeremy Tan This seems to work:
theorem indecomposable_of_simple (X : C) [Simple X] : Indecomposable X :=
⟨Simple.not_isZero X, fun Y Z i => by
refine' or_iff_not_imp_left.mpr fun h => _
rw [IsZero.iff_isSplitMono_eq_zero (biprod.inl : Y ⟶ Y ⊞ Z)] at h
change biprod.inl ≠ 0 at h
have : Simple (Y ⊞ Z) := by exact Simple.of_iso i.symm
rw [← Simple.mono_isIso_iff_nonzero biprod.inl] at h
rwa [Biprod.isIso_inl_iff_isZero] at h⟩
Jeremy Tan (Apr 26 2023 at 15:55):
@Jürgen Bergmann I already committed that fix, thanks
Last updated: Dec 20 2023 at 11:08 UTC