Zulip Chat Archive
Stream: mathlib4
Topic: How to prove well ordering principle => axiom of choice
Santiago Mourenza Rivero (Feb 02 2024 at 18:55):
I have already done the definitions of wop and aoc. The problem I had is that I need to extract the relation R for choosing one function s that .
variable (γ : Type _)
variable {β I : Type _}
variable (X : I → Set β)
variable (A : Set γ)
variable (S : Set α)
open Set
def well_ordered_principle : Prop := (isPartialOrder R : γ → γ → Prop) → (∀ (A : Set γ), Nonempty A) → ∃ n ∈ A, ∀ m ∈ A, R n m
def axiom_of_choice : Prop := (∀ (i : I), Nonempty (X i)) → ∃ (f : (I → ⋃ i, X i)), ∀ (i : I), (f i).1 ∈ X i
theorem wop_aoc : well_ordered_principle γ A → axiom_of_choice X := by
intro wop nempty
Last updated: May 02 2025 at 03:31 UTC