Zulip Chat Archive

Stream: mathlib4

Topic: How to prove well ordering principle => axiom of choice


Santiago Mourenza Rivero (Feb 02 2024 at 18:55):

I have already done the definitions of wop and aoc. The problem I had is that I need to extract the relation R for choosing one function s that s(Xi)=min(Xi)Xis(X i) = min (X i) \in X i.

variable (γ : Type _)
variable {β I : Type _}
variable (X : I  Set β)

variable (A : Set γ)
variable (S : Set α)

open Set

def well_ordered_principle : Prop := (isPartialOrder R : γ   γ  Prop)   ( (A : Set γ), Nonempty A)   n  A,  m  A, R n m

def axiom_of_choice : Prop := ( (i : I), Nonempty (X i))   (f : (I   i, X i)),  (i : I), (f i).1  X i

theorem wop_aoc : well_ordered_principle γ A  axiom_of_choice X := by
  intro wop nempty

Last updated: May 02 2025 at 03:31 UTC