Zulip Chat Archive

Stream: mathlib4

Topic: Isomorphism of Representations


Chengyan Hu (Aug 21 2025 at 12:41):

How do I state that two Representations are isomorphic?

Kim Morrison (Aug 21 2025 at 23:03):

docs#Representation

Kim Morrison (Aug 21 2025 at 23:04):

I guess X.asModule ≃+* Y.asModule?

Aaron Liu (Aug 21 2025 at 23:10):

Kim Morrison said:

I guess X.asModule ≃+* Y.asModule?

Those aren't rings so you can't use a ring equiv

Kim Morrison (Aug 22 2025 at 23:14):

Oops, wrong equiv symbol indeed. But asModule was the actual suggestion. :-)

Chengyan Hu (Aug 22 2025 at 23:16):

I wrote one with Kenny yesterday

Chengyan Hu (Aug 22 2025 at 23:16):

variable {G M : Type*} [Group G] [AddCommGroup M]

structure Representation.Equiv {R : Type*} [CommSemiring R] {G : Type*} [Group G]
    {M₁ M₂ : Type*} [_root_.AddCommMonoid M₁] [_root_.AddCommMonoid M₂] [Module R M₁] [Module R M₂]
    (ρ₁ : Representation R G M₁) (ρ₂ : Representation R G M₂)
     extends M₁ ≃ₗ[R] M₂ where
     exchange : (g : G), (m : M₁), toFun (ρ₁ g m) = (ρ₂ g (toFun m))

Last updated: Dec 20 2025 at 21:32 UTC