Zulip Chat Archive
Stream: mathlib4
Topic: Isomorphism of Representations
Chengyan Hu (Aug 21 2025 at 12:41):
How do I state that two Representations are isomorphic?
Kim Morrison (Aug 21 2025 at 23:03):
Kim Morrison (Aug 21 2025 at 23:04):
I guess X.asModule ≃+* Y.asModule?
Aaron Liu (Aug 21 2025 at 23:10):
Kim Morrison said:
I guess
X.asModule ≃+* Y.asModule?
Those aren't rings so you can't use a ring equiv
Kim Morrison (Aug 22 2025 at 23:14):
Oops, wrong equiv symbol indeed. But asModule was the actual suggestion. :-)
Chengyan Hu (Aug 22 2025 at 23:16):
I wrote one with Kenny yesterday
Chengyan Hu (Aug 22 2025 at 23:16):
variable {G M : Type*} [Group G] [AddCommGroup M]
structure Representation.Equiv {R : Type*} [CommSemiring R] {G : Type*} [Group G]
{M₁ M₂ : Type*} [_root_.AddCommMonoid M₁] [_root_.AddCommMonoid M₂] [Module R M₁] [Module R M₂]
(ρ₁ : Representation R G M₁) (ρ₂ : Representation R G M₂)
extends M₁ ≃ₗ[R] M₂ where
exchange : ∀(g : G), ∀(m : M₁), toFun (ρ₁ g m) = (ρ₂ g (toFun m))
Last updated: Dec 20 2025 at 21:32 UTC