Zulip Chat Archive

Stream: mathlib4

Topic: The deriv of tsum?


SHAO YU (Nov 27 2024 at 08:29):

import Mathlib

open Nat
open Real
open Finset
open Finsupp
open BigOperators
open PowerSeries
open MeasureTheory
lemma Step2(n k:)(x: )(hk:k=n)(hx1:x 0)(hx2:x<1):deriv (fun (x:) => ∑' (n: ),(2*n).choose n *(1/(n+1)) *x^(n+1)) x
      = (∑' (n: ),(2*n).choose n *x^n ) :=by
  --let k := n
  rw [deriv_tsum]
  sorry

How to compelete the sorry?

Johan Commelin (Nov 27 2024 at 08:41):

I have cleaned up the statement a bit

import Mathlib

lemma Step2 (n : ) (x : ) (hx1 : x  0) (hx2 : x < 1) :
    deriv (fun (x:)  ∑' (n:), (2*n).choose n * (1/(n+1)) * x^(n+1)) x = (∑' (n:), (2*n).choose n * x^n) := by
  rw [deriv_tsum]
  sorry

Johan Commelin (Nov 27 2024 at 08:41):

Note that you have 7 goals, not just 1.


Last updated: May 02 2025 at 03:31 UTC