Zulip Chat Archive
Stream: mathlib4
Topic: The deriv of tsum?
SHAO YU (Nov 27 2024 at 08:29):
import Mathlib
open Nat
open Real
open Finset
open Finsupp
open BigOperators
open PowerSeries
open MeasureTheory
lemma Step2(n k:ℕ)(x:ℝ )(hk:k=n)(hx1:x≥ 0)(hx2:x<1):deriv (fun (x:ℝ) => ∑' (n:ℕ ),(2*n).choose n *(1/(n+1)) *x^(n+1)) x
= (∑' (n:ℕ ),(2*n).choose n *x^n ) :=by
--let k := n
rw [deriv_tsum]
sorry
How to compelete the sorry?
Johan Commelin (Nov 27 2024 at 08:41):
I have cleaned up the statement a bit
import Mathlib
lemma Step2 (n : ℕ) (x : ℝ) (hx1 : x ≥ 0) (hx2 : x < 1) :
deriv (fun (x:ℝ) ↦ ∑' (n:ℕ), (2*n).choose n * (1/(n+1)) * x^(n+1)) x = (∑' (n:ℕ), (2*n).choose n * x^n) := by
rw [deriv_tsum]
sorry
Johan Commelin (Nov 27 2024 at 08:41):
Note that you have 7 goals, not just 1.
Last updated: May 02 2025 at 03:31 UTC