Zulip Chat Archive

Stream: mathlib4

Topic: Unnecessary absolute value in intervalIntegral.norm_integral


Geoffrey Irving (Jan 15 2024 at 10:16):

Is there a reason docs#intervalIntegral.norm_integral_le_of_norm_le has an absolute value on the RHS?

theorem intervalIntegral.norm_integral_le_of_norm_le {E : Type u_3} [NormedAddCommGroup E] [NormedSpace  E] {a : } {b : } {f :   E} {μ : MeasureTheory.Measure } {g :   } (h : ∀ᵐ (t : ) MeasureTheory.Measure.restrict μ (Ι a b), f t  g t) (hbound : IntervalIntegrable g μ a b) :
‖∫ (t : ) in a..b, f t μ  |∫ (t : ) in a..b, g t μ|

We know g is a.e. nonnegative from the hypotheses, and the absolute value makes it slightly harder to work with in the case I am using right now.

Sébastien Gouëzel (Jan 15 2024 at 10:24):

If b < a, then the right hand side without the absolute value is negative, so one definitely needs the absolute value.

Geoffrey Irving (Jan 15 2024 at 10:25):

Aha, I'd forgotten about reversed integrals. Thanks!

Sébastien Gouëzel (Jan 15 2024 at 10:28):

If you want to remove the absolute value, you could use instead docs#MeasureTheory.norm_integral_le_of_norm_le.


Last updated: May 02 2025 at 03:31 UTC