Zulip Chat Archive
Stream: FLT
Topic: localFullLevel isOpen
Yakov Pechersky (Mar 04 2025 at 12:45):
Is it the case that the supreme of two valuations is a valuation; relatedly, is it the case that the matrix ring over a valued ring is valued itself, with the supremum valuation over the elements? This holds for a rank one/MulArchimedean valuation, since those can be converted to a norm.
Given that, then the isOpen proof for localFullLevel can rely on the fact that matrices over the integers subring with det = 1 are a subset of the sphere at matrix valuation 1, since it must have at least one element at valuation 1.
Kevin Buzzard (Mar 04 2025 at 19:02):
If v(xy)=v(x)v(y) is the axiom then sup of two valuations isn't a valuation but if the axiom is <= then it is.
Yakov Pechersky (Mar 04 2025 at 22:12):
OK, just some scratch work if useful for anyone:
open scoped Valued NormedField
#synth Field (v.adicCompletion F)
#synth NormedField (v.adicCompletion F)
#synth IsUltrametricDist (v.adicCompletion F)
#synth IsUltrametricDist (v.adicCompletionIntegers F)
#synth NormedAddCommGroup (Fin 2 → (v.adicCompletion F))
section
variable {m' n' : Type*} [Fintype m'] [Fintype n']
instance foo {ι : Type*} {π : ι → Type*} [Fintype ι] [(i : ι) → SeminormedAddGroup (π i)]
[(i : ι) → IsUltrametricDist (π i)] :
IsUltrametricDist ((i : ι) → π i) := by
refine IsUltrametricDist.isUltrametricDist_of_forall_norm_add_le_max_norm ?_
intro f g
simp only [Pi.norm_def, Pi.add_apply, le_sup_iff, NNReal.coe_le_coe, Finset.sup_le_iff,
Finset.mem_univ, forall_const]
by_cases H : ∃ i, ∀ j, ‖g j‖₊ ≤ ‖f i‖₊
· obtain ⟨i, hi⟩ := H
refine Or.inl ?_
intro j
refine (IsUltrametricDist.nnnorm_add_le_max _ _).trans (sup_le ?_ ((hi _).trans ?_)) <;>
exact Finset.le_sup (f := fun i ↦ ‖f i‖₊) (Finset.mem_univ _)
· push_neg at H
refine Or.inr ?_
intro i
obtain ⟨j, hj⟩ := H i
refine (IsUltrametricDist.nnnorm_add_le_max _ _).trans (sup_le (hj.le.trans ?_) ?_) <;>
exact Finset.le_sup (f := fun i ↦ ‖g i‖₊) (Finset.mem_univ _)
noncomputable
local instance :
NormedAddCommGroup (Matrix m' n' (v.adicCompletionIntegers F)) :=
Matrix.normedAddCommGroup
instance : IsUltrametricDist ((Matrix m' n' (v.adicCompletionIntegers F))) := foo
variable {L : Type*} [Field L] {Γ₀ : Type*} [LinearOrderedCommGroupWithZero Γ₀]
[val : Valued L Γ₀] [hv : Valuation.RankOne val.v] in
lemma Valued.toNormedField_norm_eq (x : L) :
letI _ : NormedField L := Valued.toNormedField L Γ₀
‖x‖₊ = hv.hom (Valued.v x) := rfl
lemma bar :
IsOpen {x : Matrix m' n' (v.adicCompletionIntegers F) | ∃ i j, Valued.v (x i j).val = 1} := by
convert IsUltrametricDist.isOpen_sphere (0 : Matrix m' n' (v.adicCompletionIntegers F))
one_ne_zero
ext f
simp only [Set.mem_setOf_eq, mem_sphere_iff_norm, sub_zero, Matrix.norm_def, Pi.norm_def,
Pi.nnnorm_def, ← NormedField.valuation_apply]
constructor
· rintro ⟨i, j, h⟩
rw [le_antisymm_iff]
simp only [NNReal.coe_le_one, Finset.sup_le_iff, Finset.mem_univ, forall_const,
NNReal.one_le_coe, bot_eq_zero', zero_lt_one, Finset.le_sup_iff, true_and]
refine ⟨?_, ?_⟩
· intro x y
simp [← NNReal.coe_le_coe, ← HeightOneSpectrum.mem_adicCompletionIntegers, (f _ _).prop]
· refine ⟨i, j, ?_⟩
simpa [← Valued.toNormedField.one_le_norm_iff] using h.ge
· contrapose!
intro H
refine ne_of_lt ?_
simp only [NNReal.coe_lt_one, bot_eq_zero', zero_lt_one, Finset.sup_lt_iff, Finset.mem_univ,
forall_const]
intro i j
simp only [← NNReal.coe_lt_one, coe_nnnorm, AddSubgroupClass.coe_norm,
Valued.toNormedField.norm_lt_one_iff]
refine lt_of_le_of_ne ?_ (H _ _)
simp [← HeightOneSpectrum.mem_adicCompletionIntegers, (f _ _).prop]
Yakov Pechersky (Mar 04 2025 at 22:12):
I'll PR the IsUltrametricDist
pi result to mathlib
Yakov Pechersky (Mar 04 2025 at 22:48):
Yakov Pechersky (Mar 05 2025 at 05:27):
I've also started on the generalization of nonarchimedean normed spaces to nonarchimedean uniformities, which would also work for valued spaces that aren't necessarily rank one
#22580
Kevin Buzzard (Mar 09 2025 at 12:37):
(non-update: I have been temporarily distracted by various grant deadlines but will be back on FLT in a few days)
Last updated: May 02 2025 at 03:31 UTC