Zulip Chat Archive
Stream: Infinity-Cosmos
Topic: preserves limits
Jon Eugster (Mar 14 2025 at 08:55):
Is this, or some modified similar version of this true?
import Mathlib
open CategoryTheory Limits
-- TODO: hyps are too strong and just copy-pasted over, some can be dropped, e.g. `V` & `EnrichedOrdinaryCategory`
theorem helper {J : Type u₁} [Category.{v₁, u₁} J]
{K : Type u₂} [Category.{v₂, u₂} K]
(V : Type u') [Category.{v', u'} V] [MonoidalCategory V]
{C : Type u} [Category.{v, u} C] [EnrichedOrdinaryCategory V C]
(F : J ⥤ C) (e : K ≌ J) (G : C ⥤ V)
(h : PreservesLimit F G) : PreservesLimit (e.functor ⋙ F) G := by
constructor
intro c hc
apply Nonempty.intro
sorry
Markus Himmel (Mar 14 2025 at 09:27):
Here is a quick-and-dirty proof:
import Mathlib
open CategoryTheory Limits
-- TODO: hyps are too strong and just copy-pasted over, some can be dropped, e.g. `V` & `EnrichedOrdinaryCategory`
theorem helper {J : Type u₁} [Category.{v₁, u₁} J]
{K : Type u₂} [Category.{v₂, u₂} K]
(V : Type u') [Category.{v', u'} V] [MonoidalCategory V]
{C : Type u} [Category.{v, u} C] [EnrichedOrdinaryCategory V C]
(F : J ⥤ C) (e : K ≌ J) (G : C ⥤ V)
(h : PreservesLimit F G) : PreservesLimit (e.functor ⋙ F) G := by
constructor
intro c hc
apply Nonempty.intro
have := hc.whiskerEquivalence e.symm
let equ := e.invFunIdAssoc F
have := (IsLimit.postcomposeHomEquiv equ _).symm this
have := (isLimitOfPreserves G this)
refine IsLimit.ofIsoLimit (this.whiskerEquivalence e) ?_
refine Cones.ext (Iso.refl _) fun j => ?_
simp [equ, ← Functor.map_comp]
have := c.w (e.unit.app j)
simp at this
simp [← this, ← Functor.map_comp]
Jon Eugster (Mar 14 2025 at 09:30):
thank you :)
Last updated: May 02 2025 at 03:31 UTC