Zulip Chat Archive
Stream: toric
Topic: Current tasks
Yaël Dillies (Feb 25 2025 at 07:19):
Here is what I gathered each person was doing:
@Patrick Luo: Show that affine monoids embed inℤⁿ
for somen
@Michał Mrugała: Define toric ideals@Yaël Dillies: Refactor docs#Submonoid.LocalizationMap to implement docs#FunLike
Yaël Dillies (Feb 25 2025 at 07:20):
It would be great if we could acquire a blueprint covering at least the first few chapters of Cox-Little-Schenck. Would anyone like to write that?
Yaël Dillies (Feb 25 2025 at 07:21):
Please create one topic per task, to avoid flooding this one.
Yaël Dillies (Mar 05 2025 at 23:17):
@Michał Mrugała, @Andrew Yang, @Yaël Dillies: Group object API
Yaël Dillies (Mar 05 2025 at 23:19):
@Michał Mrugała, @Andrew Yang: The torus is a commutative group object. Discussion: #toric > The torus is a commutative group object
Yaël Dillies (Mar 05 2025 at 23:27):
- @Patrick Luo: Write the blueprint for chapter 1.1 of CLS
Yaël Dillies (Mar 05 2025 at 23:27):
@Yaël Dillies: Write the blueprint for chapter 1.2 of CLS
Michał Mrugała (Mar 06 2025 at 11:16):
@Paul Lezeau: Develop rudimentary monoid object action API. Discussion: #toric > Monoid object action API
Yaël Dillies (Mar 07 2025 at 10:53):
@Michał Mrugała, @Yaël Dillies: Group-like elements in Hopf algebras@Yaël Dillies: Characterise group-like elements in group algebras@Yaël Dillies, @Michał Mrugała: Hopf algebra homs preserve group-like elements
Yaël Dillies (Mar 08 2025 at 17:27):
@Matthew Johnson: define polytopes@Paul Reichert: define polyhedral cones
Yaël Dillies (Mar 08 2025 at 23:26):
@Matthew Johnson: Prove that the Minkowski sum of two polytopes is a polytope- @Matthew Johnson : Rescue the content of https://github.com/Jun2M/Main-theorem-of-polytopes
Yaël Dillies (Mar 09 2025 at 02:16):
0-tensor-lin-indep
: The tensor product of two linearly independent families of vectors is linearly independent. @Paul Lezeau, @Andrew Yang
Yaël Dillies (Mar 09 2025 at 21:29):
- @Aaron Liu: State the blueprint items from Chapter 1.2 of CLS
Michał Mrugała (Mar 09 2025 at 23:29):
These are tasks which are either not necessary yet, but will be necessary to do all of 1.1. Listed roughly in order of priority.
- No one yet: Define representations of algebraic groups.
- No. one yet: Define eigenspaces of characters.
- No one yet: Define scheme-theoretic image.
- No one yet: Prove that if
f : X ⟶ Y
is quasi-compact andZ
is the scheme-theoretic image off
, thenf : X ⟶ Z
is dominant.
Andrew Yang (Mar 09 2025 at 23:34):
Scheme theoretic image is probably docs#AlgebraicGeometry.Scheme.Hom.ker (or f.ker.glueData.glued
) and the last point is on the way too.
Yaël Dillies (Mar 15 2025 at 20:46):
0-mv-laurent-poly-domain
: Multivariate Laurent polynomials form a domain. @Paul Lezeau0-irred-subset-gen
: Irreducible elements lie in all sets generating a salient monoid. @Patrick Luo0-irred-gen
: Salient affine monoids are generated by their irreducible elements. @Patrick Luo
Yaël Dillies (Mar 16 2025 at 11:49):
- Yoneda for monoid object actions. @Paul Lezeau
0-hopf-cogrp-alg
: Hopf algebras are cogroup objects in the category of algebras. @Michał Mrugała, @Andrew Yang, @Christian Merten0-spec-alg
: Spec as a functor on algebras. @Yaël Dillies0-spec-hopf
: Spec as a functor on Hopf algebras. @Yaël Dillies0-ess-image-spec-hopf
: Essential image of Spec on Hopf algebras. @Yaël Dillies
Yaël Dillies (Mar 19 2025 at 16:47):
0-diag
. Define diagonalisable groups. @Sophie Morel1-1-14-aff-tor-var-spec-aff-mon-alg
: The spectrum of an affine monoid algebra is an affine toric variety. @Patrick Luo
Yaël Dillies (Mar 23 2025 at 18:39):
1-2-6-face-polyhedral-cone
. A face of a polyhedral cone is polyhedral. @Paul Reichert
Yaël Dillies (Mar 25 2025 at 11:35):
0-grp-equiv
: Equivalences lift to group object categories. @Yaël Dillies
Yaël Dillies (Mar 31 2025 at 16:32):
0-over-lim
: Limit-preserving functors lift to over categories. @Moisés Herradón Cueto0-ess-image-grp
: Essential image of a functor on group objects. @Andrew Yang
Yaël Dillies (Apr 01 2025 at 15:53):
1-2-4-dual-polyhedral-cone
: The dual of a polyhedral cone is polyhedral. @Justus Springer1-2-dual-cone-add
: Dual cone of a sumset. @Justus Springer1-2-4-double-dual-polyhedral-cone
: The double dual of a polyhedral cone is the original cone. @Justus Springer
Yaël Dillies (Apr 03 2025 at 18:29):
0-slice-adj
: Sliced adjoint functors. @Yaël Dillies, @Michał Mrugała0-full-grp-hopf-alg
. The group algebra functor is fully faithful. @Michał Mrugała1-1-torus-spec
: The torus overSpec R
. @Raphael Douglas Giles
Yaël Dillies (Apr 08 2025 at 17:02):
0-ess-image-over
: Essential image of a sliced functor. @Yaël Dillies0-ess-image-spec-alg
: Essential image of Spec on algebras. @Yaël Dillies
Unclaimed
Scheme stuff
1-1-char-torus
: The character lattice of the torus.1-1-group-hom-torus
: The image of a torus is a torus.1-1-subgroup-subtorus
: A subgroup of a torus is a torus.1-1-char-eigenspace
: Define the character eigenspace.1-1-phiA
: Defineφₐ
.1-1-14-char-spec-aff-mon-alg
: The character lattice of the spectrum of an affine monoid algebra.
Convex stuff
1-2-5-facet
: Define facets.1-2-5-edge
: Define edges.1-2-6-inter-faces
: The intersection of two faces of a polyhedral cone is a face.1-2-6-face-face
: The face of a face of a polyhedral cone is a face.1-2-6-face-mem-of-add
: Membership criterion for a face.1-2-8-dual-cone-inter-halfspaces
: Dual cone of the intersection of halfspaces.1-2-rel-interior-inner
: The relative interior in terms of the inner product.1-2-min-face
: Minimal face of a cone1-2-12-salient-cone-tfae
: Alternative definitions of salient cones.1-2-14-rat-cone
: Define rational cones.1-2-17-dual-lat-cone
: Define the dual lattice of a cone.
Last updated: May 02 2025 at 03:31 UTC