Zulip Chat Archive
Stream: ItaLean 2025
Topic: Projects: Quotient Manifolds
Lorenzo Luccioli (Dec 09 2025 at 16:44):
This thread is dedicated to the Quotient Manifolds project:
- Repository: https://github.com/grunweg/QuotientManifolds
- Informal & Formal Manager: @Michael Rothgang
Michael Rothgang (Dec 09 2025 at 17:13):
@Juanjo Madrigal If you tell me your github handle, I'll give you access to the repository :-)
Juanjo Madrigal (Dec 09 2025 at 17:14):
@juanjomadrigal (not very original ;-) )
Michael Rothgang (Dec 10 2025 at 17:10):
variable (G) in
def aux (p : M) : OpenPartialHomeomorph M (OrbitSpace M G) :=
Classical.choose (isLocalHomeomorph (G := G) (M := M) p)
lemma aux_prop (p : M) : p ∈ (aux G p).source :=
(Classical.choose_spec (isLocalHomeomorph (G := G) (M := M) p)).1
lemma aux_eq (p : M) : aux G p = (Quotient.mk _ : M → (OrbitSpace M G)) :=
(Classical.choose_spec (isLocalHomeomorph (G := G) (M := M) p)).2.symm
lemma mem_aux_target (p : M) : ⟦p⟧ ∈ (aux G p).target := by
rw [← OpenPartialHomeomorph.image_source_eq_target, Set.mem_image]
use p
refine ⟨aux_prop p, ?_⟩
sorry -- helper lemma
variable (G) in
def localInverseAt (p : M) : OpenPartialHomeomorph (OrbitSpace M G) M := (aux G p).symm
lemma foo (p : M) : (Quotient.mk _ p) ∈ (localInverseAt G p).source := by
Michael Rothgang (Dec 11 2025 at 17:25):
https://virtualmath1.stanford.edu/~conrad/diffgeomPage/handouts/qtmanifold.pdf is useful: start reading from the second half of page 12 onwards
Kevin Buzzard (Dec 11 2025 at 22:20):
Ha ha Brian was telling me in Stanford last year about the time they made him teach manifolds :-)
Last updated: Dec 20 2025 at 21:32 UTC