structure
Rel.Functional
{α : Type u_1}
{β : Type u_2}
(r : Rel α β)
extends r.Coinjective, r.Cosurjective :
- coinjective : ∀ ⦃y₁ y₂ : β⦄ ⦃x : α⦄, r x y₁ → r x y₂ → y₁ = y₂
- cosurjective : ∀ (x : α), ∃ (y : β), r x y
Instances For
structure
Rel.Cofunctional
{α : Type u_1}
{β : Type u_2}
(r : Rel α β)
extends r.Injective, r.Surjective :
- surjective : ∀ (y : β), ∃ (x : α), r x y
Instances For
structure
Rel.OneOne
{α : Type u_1}
{β : Type u_2}
(r : Rel α β)
extends r.Injective, r.Coinjective :
- coinjective : ∀ ⦃y₁ y₂ : β⦄ ⦃x : α⦄, r x y₁ → r x y₂ → y₁ = y₂
Instances For
structure
Rel.Bijective
{α : Type u_1}
{β : Type u_2}
(r : Rel α β)
extends r.Functional, r.Cofunctional :
- coinjective : ∀ ⦃y₁ y₂ : β⦄ ⦃x : α⦄, r x y₁ → r x y₂ → y₁ = y₂
- cosurjective : ∀ (x : α), ∃ (y : β), r x y
- surjective : ∀ (y : β), ∃ (x : α), r x y
Instances For
- coinjective : ∀ ⦃y₁ y₂ x : α⦄, r x y₁ → r x y₂ → y₁ = y₂
- codom_eq_dom : r.codom = r.dom
Instances For
theorem
Rel.CodomEqDom.mem_dom
{α : Type u_1}
{r : Rel α α}
(h : r.CodomEqDom)
{x y : α}
(hxy : r x y)
:
y ∈ r.dom
theorem
Rel.CodomEqDom.mem_codom
{α : Type u_1}
{r : Rel α α}
(h : r.CodomEqDom)
{x y : α}
(hxy : r x y)
:
x ∈ r.codom
An elementary description of the property CodomEqDom
.
An alternative spelling of Rel.graph
that is useful for proving inequalities of cardinals.
Equations
- r.graph' = Function.uncurry r
Instances For
theorem
Rel.sup_codomEqDom
{α : Type u_1}
{r s : Rel α α}
(hr : r.CodomEqDom)
(hs : s.CodomEqDom)
:
(r ⊔ s).CodomEqDom
theorem
Rel.iSup_codomEqDom_of_isChain
{α : Type u_2}
{T : Type u_1}
{r : T → Rel α α}
(h : ∀ (t : T), (r t).CodomEqDom)
:
(⨆ (t : T), r t).CodomEqDom
theorem
Rel.toFunction_rel
{α : Type u_1}
{β : Type u_2}
(r : Rel α β)
(hr : r.Functional)
(a : α)
:
r a (r.toFunction hr a)
theorem
Rel.toEquiv_rel
{α : Type u_1}
{β : Type u_2}
(r : Rel α β)
(hr : r.Bijective)
(a : α)
:
r a ((r.toEquiv hr) a)