def
Equiv.decidableLE
{α : Type u}
{β : Type v}
(e : α ≃ β)
[LE β]
[DecidableRel fun (x1 x2 : β) => x1 ≤ x2]
:
DecidableRel fun (x1 x2 : α) => x1 ≤ x2
Equations
- e.decidableLE x y = inferInstanceAs (Decidable (e x ≤ e y))
Instances For
def
Equiv.decidableLT
{α : Type u}
{β : Type v}
(e : α ≃ β)
[LT β]
[DecidableRel fun (x1 x2 : β) => x1 < x2]
:
DecidableRel fun (x1 x2 : α) => x1 < x2
Equations
- e.decidableLT x y = inferInstanceAs (Decidable (e x < e y))
Instances For
Equations
- e.preorder = Preorder.lift ⇑e
Instances For
Equations
- e.partialOrder = PartialOrder.lift ⇑e ⋯
Instances For
Equations
- e.linearOrder = LinearOrder.liftWithOrd ⇑e ⋯ ⋯ ⋯ ⋯
Instances For
Equations
- e.ltWellOrder = LtWellOrder.mk
Instances For
theorem
Equiv.ltWellOrder_type
{α : Type u}
{β : Type v}
(e : α ≃ β)
[LtWellOrder β]
:
Ordinal.lift.{max u v, u} (Ordinal.type fun (x1 x2 : α) => x1 < x2) = Ordinal.lift.{max u v, v} (Ordinal.type fun (x1 x2 : β) => x1 < x2)
theorem
Equiv.ltWellOrder_typein
{α : Type u}
{β : Type v}
(e : α ≃ β)
[i : LtWellOrder β]
(x : α)
:
Ordinal.lift.{max u v, v} ((Ordinal.typein fun (x1 x2 : β) => x1 < x2).toRelEmbedding (e x)) = Ordinal.lift.{max u v, u} ((Ordinal.typein fun (x1 x2 : α) => x1 < x2).toRelEmbedding x)
Equations
- e.ofNat n = { ofNat := e.symm (OfNat.ofNat n) }