Documentation

ConNF.Background.Transfer

def Equiv.le {α : Type u} {β : Type v} (e : α β) [LE β] :
LE α
Equations
  • e.le = { le := InvImage (fun (x1 x2 : β) => x1 x2) e }
Instances For
    theorem Equiv.le_def {α : Type u} {β : Type v} (e : α β) [LE β] (x y : α) :
    x y e x e y
    def Equiv.lt {α : Type u} {β : Type v} (e : α β) [LT β] :
    LT α
    Equations
    • e.lt = { lt := InvImage (fun (x1 x2 : β) => x1 < x2) e }
    Instances For
      theorem Equiv.lt_def {α : Type u} {β : Type v} (e : α β) [LT β] (x y : α) :
      x < y e x < e y
      def Equiv.min {α : Type u} {β : Type v} (e : α β) [Min β] :
      Min α
      Equations
      • e.min = { min := fun (x y : α) => e.symm (e x e y) }
      Instances For
        theorem Equiv.min_def {α : Type u} {β : Type v} (e : α β) [Min β] (x y : α) :
        x y = e.symm (e x e y)
        theorem Equiv.apply_min {α : Type u} {β : Type v} (e : α β) [Min β] (x y : α) :
        e (x y) = e x e y
        def Equiv.max {α : Type u} {β : Type v} (e : α β) [Max β] :
        Max α
        Equations
        • e.max = { max := fun (x y : α) => e.symm (e x e y) }
        Instances For
          theorem Equiv.max_def {α : Type u} {β : Type v} (e : α β) [Max β] (x y : α) :
          x y = e.symm (e x e y)
          theorem Equiv.apply_max {α : Type u} {β : Type v} (e : α β) [Max β] (x y : α) :
          e (x y) = e x e y
          def Equiv.compare {α : Type u} {β : Type v} (e : α β) [Ord β] :
          Ord α
          Equations
          • e.compare = { compare := fun (x y : α) => compare (e x) (e y) }
          Instances For
            theorem Equiv.compare_def {α : Type u} {β : Type v} (e : α β) [Ord β] (x y : α) :
            compare x y = compare (e x) (e y)
            def Equiv.decidableLE {α : Type u} {β : Type v} (e : α β) [LE β] [DecidableRel fun (x1 x2 : β) => x1 x2] :
            DecidableRel fun (x1 x2 : α) => x1 x2
            Equations
            Instances For
              def Equiv.decidableLT {α : Type u} {β : Type v} (e : α β) [LT β] [DecidableRel fun (x1 x2 : β) => x1 < x2] :
              DecidableRel fun (x1 x2 : α) => x1 < x2
              Equations
              Instances For
                def Equiv.leIso {α : Type u} {β : Type v} (e : α β) [LE β] :
                (fun (x1 x2 : α) => x1 x2) ≃r fun (x1 x2 : β) => x1 x2
                Equations
                • e.leIso = { toEquiv := e, map_rel_iff' := }
                Instances For
                  def Equiv.orderIso {α : Type u} {β : Type v} (e : α β) [LE β] :
                  α ≃o β
                  Equations
                  • e.orderIso = e.leIso
                  Instances For
                    def Equiv.ltIso {α : Type u} {β : Type v} (e : α β) [LT β] :
                    (fun (x1 x2 : α) => x1 < x2) ≃r fun (x1 x2 : β) => x1 < x2
                    Equations
                    • e.ltIso = { toEquiv := e, map_rel_iff' := }
                    Instances For
                      def Equiv.preorder {α : Type u} {β : Type v} (e : α β) [Preorder β] :
                      Equations
                      Instances For
                        def Equiv.partialOrder {α : Type u} {β : Type v} (e : α β) [PartialOrder β] :
                        Equations
                        Instances For
                          def Equiv.linearOrder {α : Type u} {β : Type v} (e : α β) [LinearOrder β] :
                          Equations
                          Instances For
                            def Equiv.ltWellOrder {α : Type u} {β : Type v} (e : α β) [LtWellOrder β] :
                            Equations
                            • e.ltWellOrder = LtWellOrder.mk
                            Instances For
                              theorem Equiv.ltWellOrder_type {α : Type u} {β : Type v} (e : α β) [LtWellOrder β] :
                              Ordinal.lift.{max u v, u} (Ordinal.type fun (x1 x2 : α) => x1 < x2) = Ordinal.lift.{max u v, v} (Ordinal.type fun (x1 x2 : β) => x1 < x2)
                              theorem Equiv.ltWellOrder_typein {α : Type u} {β : Type v} (e : α β) [i : LtWellOrder β] (x : α) :
                              Ordinal.lift.{max u v, v} ((Ordinal.typein fun (x1 x2 : β) => x1 < x2).toRelEmbedding (e x)) = Ordinal.lift.{max u v, u} ((Ordinal.typein fun (x1 x2 : α) => x1 < x2).toRelEmbedding x)
                              theorem Equiv.noMaxOrder {α : Type u} {β : Type v} (e : α β) [LT β] [NoMaxOrder β] :
                              def Equiv.ofNat {α : Type u} {β : Type v} (e : α β) (n : ) [OfNat β n] :
                              OfNat α n
                              Equations
                              Instances For
                                theorem Equiv.apply_add {α : Type u} {β : Type v} (e : α β) [Add β] (x y : α) :
                                e (x + y) = e x + e y
                                theorem Equiv.apply_sub {α : Type u} {β : Type v} (e : α β) [Sub β] (x y : α) :
                                e (x - y) = e x - e y
                                theorem Equiv.apply_zero {α : Type u} {β : Type v} (e : α β) [Zero β] :
                                e 0 = 0