Near-litters #
In this file, we define near-litters.
Main declarations #
ConNF.NearLitter
: The type of near-litters.ConNF.card_nearLitter
: There are preciselyμ
near-litters.ConNF.Interference
: The interference of two near-litters, which is equal to their symmetric difference if the two near-litters are near, and equal to their intersection if they are not.
- litter : ConNF.Litter
- atoms : Set ConNF.Atom
Instances For
instance
ConNF.instSuperLNearLitterLitter
[ConNF.Params]
:
ConNF.SuperL ConNF.NearLitter ConNF.Litter
Equations
- ConNF.instSuperLNearLitterLitter = { superL := fun (N : ConNF.NearLitter) => N.litter }
instance
ConNF.instSuperANearLitterSetAtom
[ConNF.Params]
:
ConNF.SuperA ConNF.NearLitter (Set ConNF.Atom)
Equations
- ConNF.instSuperANearLitterSetAtom = { superA := fun (N : ConNF.NearLitter) => N.atoms }
instance
ConNF.instSuperNLitterNearLitter
[ConNF.Params]
:
ConNF.SuperN ConNF.Litter ConNF.NearLitter
@[simp]
theorem
ConNF.NearLitter.mk_litter
[ConNF.Params]
(L : ConNF.Litter)
(s : Set ConNF.Atom)
(h : s ~ Lᴬ)
:
@[simp]
theorem
ConNF.NearLitter.mk_atoms
[ConNF.Params]
(L : ConNF.Litter)
(s : Set ConNF.Atom)
(h : s ~ Lᴬ)
:
theorem
ConNF.NearLitter.symmDiff_small
[ConNF.Params]
(N : ConNF.NearLitter)
:
ConNF.Small (symmDiff Nᴬ Nᴸᴬ)
theorem
ConNF.NearLitter.card_atoms
[ConNF.Params]
(N : ConNF.NearLitter)
:
Cardinal.mk ↑Nᴬ = Cardinal.mk ConNF.κ
theorem
ConNF.nearLitter_litter_eq_of_near
[ConNF.Params]
{N₁ N₂ : ConNF.NearLitter}
(h : N₁ᴬ ~ N₂ᴬ)
:
@[simp]
theorem
ConNF.card_near_litter
[ConNF.Params]
(L : ConNF.Litter)
:
Cardinal.mk ↑{s : Set ConNF.Atom | s ~ Lᴬ} = Cardinal.mk ConNF.μ
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
Interference of near-litters #
theorem
ConNF.litter_ne_of_inter_small
[ConNF.Params]
{N₁ N₂ : ConNF.NearLitter}
(h : ConNF.Small (N₁ᴬ ∩ N₂ᴬ))
:
theorem
ConNF.inter_small_of_litter_ne
[ConNF.Params]
{N₁ N₂ : ConNF.NearLitter}
(h : N₁ᴸ ≠ N₂ᴸ)
:
ConNF.Small (N₁ᴬ ∩ N₂ᴬ)
theorem
ConNF.interference_eq_of_litter_eq
[ConNF.Params]
{N₁ N₂ : ConNF.NearLitter}
(h : N₁ᴸ = N₂ᴸ)
:
ConNF.interference N₁ N₂ = symmDiff N₁ᴬ N₂ᴬ
theorem
ConNF.interference_eq_of_litter_ne
[ConNF.Params]
{N₁ N₂ : ConNF.NearLitter}
(h : N₁ᴸ ≠ N₂ᴸ)
:
ConNF.interference N₁ N₂ = N₁ᴬ ∩ N₂ᴬ
theorem
ConNF.interference_small
[ConNF.Params]
(N₁ N₂ : ConNF.NearLitter)
:
ConNF.Small (ConNF.interference N₁ N₂)