Coding functions #
In this file, we define coding functions.
Main declarations #
ConNF.CodingFunction
: The type of coding functions.
def
ConNF.Support.orbitRel
[ConNF.Params]
[ConNF.Level]
[ConNF.CoherentData]
{β : ConNF.TypeIndex}
[ConNF.LeLevel β]
:
Rel (ConNF.Support β) (ConNF.Support β)
Equations
- S.orbitRel T = ∃ (ρ : ConNF.AllPerm β), ρᵁ • S = T
Instances For
theorem
ConNF.Support.orbitRel_isEquivalence
[ConNF.Params]
[ConNF.Level]
[ConNF.CoherentData]
{β : ConNF.TypeIndex}
[ConNF.LeLevel β]
:
Equivalence ConNF.Support.orbitRel
instance
ConNF.Support.setoid
[ConNF.Params]
[ConNF.Level]
[ConNF.CoherentData]
(β : ConNF.TypeIndex)
[ConNF.LeLevel β]
:
Setoid (ConNF.Support β)
Equations
- ConNF.Support.setoid β = { r := ConNF.Support.orbitRel, iseqv := ⋯ }
def
ConNF.SupportOrbit
[ConNF.Params]
[ConNF.Level]
[ConNF.CoherentData]
(β : ConNF.TypeIndex)
[ConNF.LeLevel β]
:
Type u
Equations
Instances For
def
ConNF.Support.orbit
[ConNF.Params]
[ConNF.Level]
[ConNF.CoherentData]
{β : ConNF.TypeIndex}
[ConNF.LeLevel β]
(S : ConNF.Support β)
:
Equations
- S.orbit = ⟦S⟧
Instances For
theorem
ConNF.SupportOrbit.out_orbit
[ConNF.Params]
[ConNF.Level]
[ConNF.CoherentData]
{β : ConNF.TypeIndex}
[ConNF.LeLevel β]
(o : ConNF.SupportOrbit β)
:
(Quotient.out o).orbit = o
theorem
ConNF.SupportOrbit.exists_support
[ConNF.Params]
[ConNF.Level]
[ConNF.CoherentData]
{β : ConNF.TypeIndex}
[ConNF.LeLevel β]
(o : ConNF.SupportOrbit β)
:
∃ (S : ConNF.Support β), S.orbit = o
theorem
ConNF.Support.orbit_eq_iff
[ConNF.Params]
[ConNF.Level]
[ConNF.CoherentData]
{β : ConNF.TypeIndex}
[ConNF.LeLevel β]
{S T : ConNF.Support β}
:
@[simp]
theorem
ConNF.Support.smul_orbit
[ConNF.Params]
[ConNF.Level]
[ConNF.CoherentData]
{β : ConNF.TypeIndex}
[ConNF.LeLevel β]
{S : ConNF.Support β}
{ρ : ConNF.AllPerm β}
:
structure
ConNF.CodingFunction
[ConNF.Params]
[ConNF.Level]
[ConNF.CoherentData]
(β : ConNF.TypeIndex)
[ConNF.LeLevel β]
:
Type u
- rel : Rel (ConNF.Support β) (ConNF.TSet β)
- rel_coinjective : self.rel.Coinjective
- rel_dom_nonempty : self.rel.dom.Nonempty
- supports_of_rel : ∀ {S : ConNF.Support β} {x : ConNF.TSet β}, self.rel S x → S.Supports x
- orbit_eq_of_mem_dom : ∀ {S T : ConNF.Support β}, S ∈ self.rel.dom → T ∈ self.rel.dom → S.orbit = T.orbit
- smul_rel : ∀ {S : ConNF.Support β} {x : ConNF.TSet β}, self.rel S x → ∀ (ρ : ConNF.AllPerm β), self.rel (ρᵁ • S) (ρ • x)
Instances For
theorem
ConNF.CodingFunction.ext'
[ConNF.Params]
[ConNF.Level]
[ConNF.CoherentData]
{β : ConNF.TypeIndex}
[ConNF.LeLevel β]
{χ₁ χ₂ : ConNF.CodingFunction β}
(h : ∀ (S : ConNF.Support β) (x : ConNF.TSet β), χ₁.rel S x ↔ χ₂.rel S x)
:
χ₁ = χ₂
theorem
ConNF.CodingFunction.ext_aux
[ConNF.Params]
[ConNF.Level]
[ConNF.CoherentData]
{β : ConNF.TypeIndex}
[ConNF.LeLevel β]
{χ₁ χ₂ : ConNF.CodingFunction β}
{S : ConNF.Support β}
{x : ConNF.TSet β}
(h₁ : χ₁.rel S x)
(h₂ : χ₂.rel S x)
:
χ₁.rel ≤ χ₂.rel
theorem
ConNF.CodingFunction.ext
[ConNF.Params]
[ConNF.Level]
[ConNF.CoherentData]
{β : ConNF.TypeIndex}
[ConNF.LeLevel β]
{χ₁ χ₂ : ConNF.CodingFunction β}
(S : ConNF.Support β)
(x : ConNF.TSet β)
(h₁ : χ₁.rel S x)
(h₂ : χ₂.rel S x)
:
χ₁ = χ₂
theorem
ConNF.CodingFunction.exists_allPerm_of_rel
[ConNF.Params]
[ConNF.Level]
[ConNF.CoherentData]
{β : ConNF.TypeIndex}
[ConNF.LeLevel β]
{χ : ConNF.CodingFunction β}
{S T : ConNF.Support β}
{x y : ConNF.TSet β}
(h₁ : χ.rel S x)
(h₂ : χ.rel T y)
:
def
ConNF.Tangle.code
[ConNF.Params]
[ConNF.Level]
[ConNF.CoherentData]
{β : ConNF.TypeIndex}
[ConNF.LeLevel β]
(t : ConNF.Tangle β)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
ConNF.Tangle.code_rel_self
[ConNF.Params]
[ConNF.Level]
[ConNF.CoherentData]
{β : ConNF.TypeIndex}
[ConNF.LeLevel β]
(t : ConNF.Tangle β)
:
t.code.rel t.support t.set
theorem
ConNF.Tangle.code_eq_code_iff
[ConNF.Params]
[ConNF.Level]
[ConNF.CoherentData]
{β : ConNF.TypeIndex}
[ConNF.LeLevel β]
(t₁ t₂ : ConNF.Tangle β)
:
t₁.code = t₂.code ↔ ∃ (ρ : ConNF.AllPerm β), ρ • t₁ = t₂
@[simp]
theorem
ConNF.Tangle.smul_code
[ConNF.Params]
[ConNF.Level]
[ConNF.CoherentData]
{β : ConNF.TypeIndex}
[ConNF.LeLevel β]
(t : ConNF.Tangle β)
(ρ : ConNF.AllPerm β)
: