The Exception monad transformer using CPS style.
Equations
- ExceptCpsT ε m α = ((β : Type ?u.27) → (α → m β) → (ε → m β) → m β)
Instances For
@[inline]
def
ExceptCpsT.run
{m : Type u → Type u_1}
{ε α : Type u}
[Monad m]
(x : ExceptCpsT ε m α)
:
m (Except ε α)
Instances For
@[inline]
def
ExceptCpsT.runK
{m : Type u → Type u_1}
{β ε α : Type u}
(x : ExceptCpsT ε m α)
(s : ε)
(ok : α → m β)
(error : ε → m β)
:
m β
Instances For
@[inline]
def
ExceptCpsT.runCatch
{m : Type u_1 → Type u_2}
{α : Type u_1}
[Monad m]
(x : ExceptCpsT α m α)
:
m α
Equations
- x.runCatch = x α pure pure
Instances For
@[always_inline]
Equations
- ExceptCpsT.instMonad = Monad.mk
theorem
ExceptCpsT.instLawfulMonad
{σ : Type u_1}
{m : Type u_1 → Type u_2}
:
LawfulMonad (ExceptCpsT σ m)
instance
ExceptCpsT.instMonadExceptOf
{ε : Type u_1}
{m : Type u_1 → Type u_2}
:
MonadExceptOf ε (ExceptCpsT ε m)
@[inline]
def
ExceptCpsT.lift
{m : Type u_1 → Type u_2}
{α ε : Type u_1}
[Monad m]
(x : m α)
:
ExceptCpsT ε m α
Equations
- ExceptCpsT.lift x✝¹ x✝ k x = x✝¹ >>= k
Instances For
instance
ExceptCpsT.instMonadLiftOfMonad
{m : Type u_1 → Type u_2}
{σ : Type u_1}
[Monad m]
:
MonadLift m (ExceptCpsT σ m)
@[simp]
theorem
ExceptCpsT.run_lift
{m : Type u → Type u_1}
{α ε : Type u}
[Monad m]
(x : m α)
:
(ExceptCpsT.lift x).run = do
let a ← x
pure (Except.ok a)
@[simp]
theorem
ExceptCpsT.run_throw
{m : Type u_1 → Type u_2}
{ε β : Type u_1}
{e : ε}
[Monad m]
:
(throw e).run = pure (Except.error e)
@[simp]
theorem
ExceptCpsT.run_bind_lift
{m : Type u_1 → Type u_2}
{α ε β : Type u_1}
[Monad m]
(x : m α)
(f : α → ExceptCpsT ε m β)
:
(ExceptCpsT.lift x >>= f).run = do
let a ← x
(f a).run
@[simp]
theorem
ExceptCpsT.runCatch_lift
{m : Type u → Type u_1}
{α : Type u}
[Monad m]
[LawfulMonad m]
(x : m α)
:
(ExceptCpsT.lift x).runCatch = x
@[simp]
theorem
ExceptCpsT.runCatch_bind_lift
{m : Type u_1 → Type u_2}
{α β : Type u_1}
[Monad m]
(x : m α)
(f : α → ExceptCpsT β m β)
:
(ExceptCpsT.lift x >>= f).runCatch = do
let a ← x
(f a).runCatch