Documentation

Init.Data.Sum.Basic

Disjoint union of types #

This file defines basic operations on the the sum type α ⊕ β.

α ⊕ β is the type made of a copy of α and a copy of β. It is also called disjoint union.

Main declarations #

Further material #

See Init.Data.Sum.Lemmas for theorems about these definitions.

Notes #

The definition of Sum takes values in Type _. This effectively forbids Prop- valued sum types. To this effect, we have PSum, which takes value in Sort _ and carries a more complicated universe signature in consequence. The Prop version is Or.

instance Sum.instDecidableEq {α✝ : Type u_1} {β✝ : Type u_2} [DecidableEq α✝] [DecidableEq β✝] :
DecidableEq (α✝ β✝)
instance Sum.instBEq {α✝ : Type u_1} {β✝ : Type u_2} [BEq α✝] [BEq β✝] :
BEq (α✝ β✝)
def Sum.isLeft {α : Type u_1} {β : Type u_2} :
α βBool

Check if a sum is inl.

Equations
Instances For
    def Sum.isRight {α : Type u_1} {β : Type u_2} :
    α βBool

    Check if a sum is inr.

    Equations
    Instances For
      def Sum.getLeft {α : Type u_1} {β : Type u_2} (ab : α β) :
      ab.isLeft = trueα

      Retrieve the contents from a sum known to be inl.

      Instances For
        def Sum.getRight {α : Type u_1} {β : Type u_2} (ab : α β) :
        ab.isRight = trueβ

        Retrieve the contents from a sum known to be inr.

        Equations
        Instances For
          def Sum.getLeft? {α : Type u_1} {β : Type u_2} :
          α βOption α

          Check if a sum is inl and if so, retrieve its contents.

          Equations
          Instances For
            def Sum.getRight? {α : Type u_1} {β : Type u_2} :
            α βOption β

            Check if a sum is inr and if so, retrieve its contents.

            Equations
            Instances For
              @[simp]
              theorem Sum.isLeft_inl {α : Type u_1} {β : Type u_2} {x : α} :
              (Sum.inl x).isLeft = true
              @[simp]
              theorem Sum.isLeft_inr {α : Type u_1} {β : Type u_2} {x : β} :
              (Sum.inr x).isLeft = false
              @[simp]
              theorem Sum.isRight_inl {α : Type u_1} {β : Type u_2} {x : α} :
              (Sum.inl x).isRight = false
              @[simp]
              theorem Sum.isRight_inr {α : Type u_1} {β : Type u_2} {x : β} :
              (Sum.inr x).isRight = true
              @[simp]
              theorem Sum.getLeft_inl {α : Type u_1} {β : Type u_2} {x : α} (h : (Sum.inl x).isLeft = true) :
              (Sum.inl x).getLeft h = x
              @[simp]
              theorem Sum.getRight_inr {α : Type u_1} {β : Type u_2} {x : β} (h : (Sum.inr x).isRight = true) :
              (Sum.inr x).getRight h = x
              @[simp]
              theorem Sum.getLeft?_inl {α : Type u_1} {β : Type u_2} {x : α} :
              (Sum.inl x).getLeft? = some x
              @[simp]
              theorem Sum.getLeft?_inr {α : Type u_1} {β : Type u_2} {x : β} :
              (Sum.inr x).getLeft? = none
              @[simp]
              theorem Sum.getRight?_inl {α : Type u_1} {β : Type u_2} {x : α} :
              (Sum.inl x).getRight? = none
              @[simp]
              theorem Sum.getRight?_inr {α : Type u_1} {β : Type u_2} {x : β} :
              (Sum.inr x).getRight? = some x
              def Sum.elim {α : Type u_1} {β : Type u_2} {γ : Sort u_3} (f : αγ) (g : βγ) :
              α βγ

              Define a function on α ⊕ β by giving separate definitions on α and β.

              Equations
              Instances For
                @[simp]
                theorem Sum.elim_inl {α : Type u_1} {γ : Sort u_2} {β : Type u_3} (f : αγ) (g : βγ) (x : α) :
                Sum.elim f g (Sum.inl x) = f x
                @[simp]
                theorem Sum.elim_inr {α : Type u_1} {γ : Sort u_2} {β : Type u_3} (f : αγ) (g : βγ) (x : β) :
                Sum.elim f g (Sum.inr x) = g x
                def Sum.map {α : Type u_1} {α' : Type u_2} {β : Type u_3} {β' : Type u_4} (f : αα') (g : ββ') :
                α βα' β'

                Map α ⊕ β to α' ⊕ β' sending α to α' and β to β'.

                Instances For
                  @[simp]
                  theorem Sum.map_inl {α : Type u_1} {α' : Type u_2} {β : Type u_3} {β' : Type u_4} (f : αα') (g : ββ') (x : α) :
                  Sum.map f g (Sum.inl x) = Sum.inl (f x)
                  @[simp]
                  theorem Sum.map_inr {α : Type u_1} {α' : Type u_2} {β : Type u_3} {β' : Type u_4} (f : αα') (g : ββ') (x : β) :
                  Sum.map f g (Sum.inr x) = Sum.inr (g x)
                  def Sum.swap {α : Type u_1} {β : Type u_2} :
                  α ββ α

                  Swap the factors of a sum type

                  Instances For
                    @[simp]
                    theorem Sum.swap_inl {α : Type u_1} {β : Type u_2} {x : α} :
                    (Sum.inl x).swap = Sum.inr x
                    @[simp]
                    theorem Sum.swap_inr {α : Type u_1} {β : Type u_2} {x : β} :
                    (Sum.inr x).swap = Sum.inl x
                    inductive Sum.LiftRel {α : Type u_1} {γ : Type u_2} {β : Type u_3} {δ : Type u_4} (r : αγProp) (s : βδProp) :
                    α βγ δProp

                    Lifts pointwise two relations between α and γ and between β and δ to a relation between α ⊕ β and γ ⊕ δ.

                    Instances For
                      @[simp]
                      theorem Sum.liftRel_inl_inl {α✝ : Type u_1} {γ✝ : Type u_2} {r : α✝γ✝Prop} {β✝ : Type u_3} {δ✝ : Type u_4} {s : β✝δ✝Prop} {a : α✝} {c : γ✝} :
                      Sum.LiftRel r s (Sum.inl a) (Sum.inl c) r a c
                      @[simp]
                      theorem Sum.not_liftRel_inl_inr {α✝ : Type u_1} {γ✝ : Type u_2} {r : α✝γ✝Prop} {β✝ : Type u_3} {δ✝ : Type u_4} {s : β✝δ✝Prop} {a : α✝} {d : δ✝} :
                      @[simp]
                      theorem Sum.not_liftRel_inr_inl {α✝ : Type u_1} {γ✝ : Type u_2} {r : α✝γ✝Prop} {β✝ : Type u_3} {δ✝ : Type u_4} {s : β✝δ✝Prop} {b : β✝} {c : γ✝} :
                      @[simp]
                      theorem Sum.liftRel_inr_inr {α✝ : Type u_1} {γ✝ : Type u_2} {r : α✝γ✝Prop} {β✝ : Type u_3} {δ✝ : Type u_4} {s : β✝δ✝Prop} {b : β✝} {d : δ✝} :
                      Sum.LiftRel r s (Sum.inr b) (Sum.inr d) s b d
                      instance Sum.instDecidableLiftRel {α : Type u_1} {γ : Type u_2} {β : Type u_3} {δ : Type u_4} {r : αγProp} {s : βδProp} [(a : α) → (c : γ) → Decidable (r a c)] [(b : β) → (d : δ) → Decidable (s b d)] (ab : α β) (cd : γ δ) :
                      inductive Sum.Lex {α : Type u_1} {β : Type u_2} (r : ααProp) (s : ββProp) :
                      α βα βProp

                      Lexicographic order for sum. Sort all the inl a before the inr b, otherwise use the respective order on α or β.

                      Instances For
                        @[simp]
                        theorem Sum.lex_inl_inl {α✝ : Type u_1} {r : α✝α✝Prop} {β✝ : Type u_2} {s : β✝β✝Prop} {a₁ a₂ : α✝} :
                        Sum.Lex r s (Sum.inl a₁) (Sum.inl a₂) r a₁ a₂
                        @[simp]
                        theorem Sum.lex_inr_inr {α✝ : Type u_1} {r : α✝α✝Prop} {β✝ : Type u_2} {s : β✝β✝Prop} {b₁ b₂ : β✝} :
                        Sum.Lex r s (Sum.inr b₁) (Sum.inr b₂) s b₁ b₂
                        @[simp]
                        theorem Sum.lex_inr_inl {α✝ : Type u_1} {r : α✝α✝Prop} {β✝ : Type u_2} {s : β✝β✝Prop} {b : β✝} {a : α✝} :
                        instance Sum.instDecidableRelSumLex {α✝ : Type u_1} {r : α✝α✝Prop} {α✝¹ : Type u_2} {s : α✝¹α✝¹Prop} [DecidableRel r] [DecidableRel s] :
                        Equations