Equations
- Lean.HashMapBucket α β = { b : Array (Lean.AssocList α β) // b.size.isPowerOfTwo }
Instances For
def
Lean.HashMapBucket.update
{α : Type u}
{β : Type v}
(data : Lean.HashMapBucket α β)
(i : USize)
(d : Lean.AssocList α β)
(h : i.toNat < data.val.size)
:
Equations
- data.update i d h = ⟨data.val.uset i d h, ⋯⟩
Instances For
@[simp]
theorem
Lean.HashMapBucket.size_update
{α : Type u}
{β : Type v}
(data : Lean.HashMapBucket α β)
(i : USize)
(d : Lean.AssocList α β)
(h : i.toNat < data.val.size)
:
(data.update i d h).val.size = data.val.size
@[deprecated Std.HashMap.Raw.empty]
Equations
- Lean.mkHashMapImp capacity = { size := 0, buckets := ⟨mkArray (Lean.numBucketsForCapacity✝ capacity).nextPowerOfTwo Lean.AssocList.nil, ⋯⟩ }
Instances For
@[inline]
def
Lean.HashMapImp.reinsertAux
{α : Type u}
{β : Type v}
(hashFn : α → UInt64)
(data : Lean.HashMapBucket α β)
(a : α)
(b : β)
:
Equations
- Lean.HashMapImp.reinsertAux hashFn data a b = match Lean.HashMapImp.mkIdx✝ (hashFn a) ⋯ with | ⟨i, h⟩ => data.update i (Lean.AssocList.cons a b data.val[i]) h
Instances For
@[inline]
def
Lean.HashMapImp.foldBucketsM
{α : Type u}
{β : Type v}
{δ : Type w}
{m : Type w → Type w}
[Monad m]
(data : Lean.HashMapBucket α β)
(d : δ)
(f : δ → α → β → m δ)
:
m δ
Instances For
@[inline]
def
Lean.HashMapImp.foldBuckets
{α : Type u}
{β : Type v}
{δ : Type w}
(data : Lean.HashMapBucket α β)
(d : δ)
(f : δ → α → β → δ)
:
δ
Instances For
@[inline]
def
Lean.HashMapImp.foldM
{α : Type u}
{β : Type v}
{δ : Type w}
{m : Type w → Type w}
[Monad m]
(f : δ → α → β → m δ)
(d : δ)
(h : Lean.HashMapImp α β)
:
m δ
Instances For
@[inline]
def
Lean.HashMapImp.fold
{α : Type u}
{β : Type v}
{δ : Type w}
(f : δ → α → β → δ)
(d : δ)
(m : Lean.HashMapImp α β)
:
δ
Equations
- Lean.HashMapImp.fold f d m = Lean.HashMapImp.foldBuckets m.buckets d f
Instances For
@[inline]
def
Lean.HashMapImp.forBucketsM
{α : Type u}
{β : Type v}
{m : Type w → Type w}
[Monad m]
(data : Lean.HashMapBucket α β)
(f : α → β → m PUnit)
:
m PUnit
Instances For
@[inline]
def
Lean.HashMapImp.forM
{α : Type u}
{β : Type v}
{m : Type w → Type w}
[Monad m]
(f : α → β → m PUnit)
(h : Lean.HashMapImp α β)
:
m PUnit
Instances For
def
Lean.HashMapImp.findEntry?
{α : Type u}
{β : Type v}
[BEq α]
[Hashable α]
(m : Lean.HashMapImp α β)
(a : α)
:
Instances For
def
Lean.HashMapImp.find?
{α : Type u}
{β : Type v}
[beq : BEq α]
[Hashable α]
(m : Lean.HashMapImp α β)
(a : α)
:
Option β
Instances For
def
Lean.HashMapImp.contains
{α : Type u}
{β : Type v}
[BEq α]
[Hashable α]
(m : Lean.HashMapImp α β)
(a : α)
:
Instances For
@[irreducible]
def
Lean.HashMapImp.moveEntries
{α : Type u}
{β : Type v}
[Hashable α]
(i : Nat)
(source : Array (Lean.AssocList α β))
(target : Lean.HashMapBucket α β)
:
Instances For
def
Lean.HashMapImp.expand
{α : Type u}
{β : Type v}
[Hashable α]
(size : Nat)
(buckets : Lean.HashMapBucket α β)
:
Lean.HashMapImp α β
Equations
- Lean.HashMapImp.expand size buckets = { size := size, buckets := Lean.HashMapImp.moveEntries 0 buckets.val ⟨mkArray (buckets.val.size * 2) Lean.AssocList.nil, ⋯⟩ }
Instances For
@[inline]
def
Lean.HashMapImp.insert
{α : Type u}
{β : Type v}
[beq : BEq α]
[Hashable α]
(m : Lean.HashMapImp α β)
(a : α)
(b : β)
:
Lean.HashMapImp α β × Bool
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[inline]
def
Lean.HashMapImp.insertIfNew
{α : Type u}
{β : Type v}
[beq : BEq α]
[Hashable α]
(m : Lean.HashMapImp α β)
(a : α)
(b : β)
:
Lean.HashMapImp α β × Option β
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
Lean.HashMapImp.erase
{α : Type u}
{β : Type v}
[BEq α]
[Hashable α]
(m : Lean.HashMapImp α β)
(a : α)
:
Lean.HashMapImp α β
Instances For
inductive
Lean.HashMapImp.WellFormed
{α : Type u}
{β : Type v}
[BEq α]
[Hashable α]
:
Lean.HashMapImp α β → Prop
- mkWff: ∀ {α : Type u} {β : Type v} [inst : BEq α] [inst_1 : Hashable α] (n : Nat), (Lean.mkHashMapImp n).WellFormed
- insertWff: ∀ {α : Type u} {β : Type v} [inst : BEq α] [inst_1 : Hashable α] (m : Lean.HashMapImp α β) (a : α) (b : β), m.WellFormed → (m.insert a b).fst.WellFormed
- insertIfNewWff: ∀ {α : Type u} {β : Type v} [inst : BEq α] [inst_1 : Hashable α] (m : Lean.HashMapImp α β) (a : α) (b : β), m.WellFormed → (m.insertIfNew a b).fst.WellFormed
- eraseWff: ∀ {α : Type u} {β : Type v} [inst : BEq α] [inst_1 : Hashable α] (m : Lean.HashMapImp α β) (a : α), m.WellFormed → (m.erase a).WellFormed
Instances For
@[deprecated Std.HashMap]
Equations
- Lean.HashMap α β = { m : Lean.HashMapImp α β // m.WellFormed }
Instances For
@[deprecated Std.HashMap.empty]
def
Lean.mkHashMap
{α : Type u}
{β : Type v}
[BEq α]
[Hashable α]
(capacity : Nat := 8)
:
Lean.HashMap α β
Instances For
instance
Lean.HashMap.instInhabited
{α : Type u_1}
{β : Type u_2}
[BEq α]
[Hashable α]
:
Inhabited (Lean.HashMap α β)
Equations
- Lean.HashMap.instInhabited = { default := Lean.mkHashMap }
instance
Lean.HashMap.instEmptyCollection
{α : Type u_1}
{β : Type u_2}
[BEq α]
[Hashable α]
:
EmptyCollection (Lean.HashMap α β)
Equations
- Lean.HashMap.instEmptyCollection = { emptyCollection := Lean.mkHashMap }
@[deprecated Std.HashMap.insert]
def
Lean.HashMap.insert
{α : Type u}
{β : Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
(m : Lean.HashMap α β)
(a : α)
(b : β)
:
Lean.HashMap α β
Equations
- Lean.HashMap.insert ⟨m_2, hw⟩ a b = match h : m_2.insert a b with | (m', snd) => ⟨m', ⋯⟩
Instances For
@[deprecated Std.HashMap.containsThenInsert]
def
Lean.HashMap.insert'
{α : Type u}
{β : Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
(m : Lean.HashMap α β)
(a : α)
(b : β)
:
Lean.HashMap α β × Bool
Similar to insert
, but also returns a Boolean flag indicating whether an existing entry has been replaced with a -> b
.
Instances For
@[deprecated Std.HashMap.insertIfNew]
def
Lean.HashMap.insertIfNew
{α : Type u}
{β : Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
(m : Lean.HashMap α β)
(a : α)
(b : β)
:
Lean.HashMap α β × Option β
Similar to insert
, but returns some old
if the map already had an entry α → old
.
If the result is some old
, the resulting map is equal to m
.
Equations
- Lean.HashMap.insertIfNew ⟨m_2, hw⟩ a b = match h : m_2.insertIfNew a b with | (m', old) => (⟨m', ⋯⟩, old)
Instances For
@[inline, deprecated Std.HashMap.erase]
def
Lean.HashMap.erase
{α : Type u}
{β : Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
(m : Lean.HashMap α β)
(a : α)
:
Lean.HashMap α β
Equations
- Lean.HashMap.erase ⟨m_2, hw⟩ a = ⟨m_2.erase a, ⋯⟩
Instances For
@[inline, deprecated]
def
Lean.HashMap.findEntry?
{α : Type u}
{β : Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
(m : Lean.HashMap α β)
(a : α)
:
Equations
- Lean.HashMap.findEntry? ⟨m_2, hw⟩ a = m_2.findEntry? a
Instances For
@[inline, deprecated]
def
Lean.HashMap.find?
{α : Type u}
{β : Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
(m : Lean.HashMap α β)
(a : α)
:
Option β
Equations
- Lean.HashMap.find? ⟨m_2, hw⟩ a = m_2.find? a
Instances For
@[inline, deprecated]
def
Lean.HashMap.findD
{α : Type u}
{β : Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
(m : Lean.HashMap α β)
(a : α)
(b₀ : β)
:
β
Instances For
@[inline, deprecated]
def
Lean.HashMap.find!
{α : Type u}
{β : Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
[Inhabited β]
(m : Lean.HashMap α β)
(a : α)
:
β
Instances For
instance
Lean.HashMap.instGetElemOptionTrue
{α : Type u}
{β : Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
:
GetElem (Lean.HashMap α β) α (Option β) fun (x : Lean.HashMap α β) (x : α) => True
@[inline, deprecated Std.HashMap.contains]
def
Lean.HashMap.contains
{α : Type u}
{β : Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
(m : Lean.HashMap α β)
(a : α)
:
Equations
- Lean.HashMap.contains ⟨m_2, hw⟩ a = m_2.contains a
Instances For
@[inline, deprecated Std.HashMap.fold]
def
Lean.HashMap.fold
{α : Type u}
{β : Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{δ : Type w}
(f : δ → α → β → δ)
(init : δ)
(m : Lean.HashMap α β)
:
δ
Equations
- Lean.HashMap.fold f init ⟨m_2, hw⟩ = Lean.HashMapImp.fold f init m_2
Instances For
@[inline, deprecated Std.HashMap.forM]
def
Lean.HashMap.forM
{α : Type u}
{β : Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : Type w → Type w}
[Monad m]
(f : α → β → m PUnit)
(h : Lean.HashMap α β)
:
m PUnit
Equations
- Lean.HashMap.forM f ⟨m_2, hw⟩ = Lean.HashMapImp.forM f m_2
Instances For
@[inline, deprecated Std.HashMap.size]
def
Lean.HashMap.size
{α : Type u}
{β : Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
(m : Lean.HashMap α β)
:
Instances For
@[inline, deprecated Std.HashMap.isEmpty]
def
Lean.HashMap.isEmpty
{α : Type u}
{β : Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
(m : Lean.HashMap α β)
:
Instances For
@[deprecated Std.HashMap.toList]
def
Lean.HashMap.toList
{α : Type u}
{β : Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
(m : Lean.HashMap α β)
:
Instances For
@[deprecated Std.HashMap.toArray]
def
Lean.HashMap.toArray
{α : Type u}
{β : Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
(m : Lean.HashMap α β)
:
Instances For
@[deprecated]
def
Lean.HashMap.numBuckets
{α : Type u}
{β : Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
(m : Lean.HashMap α β)
:
Instances For
@[deprecated Std.HashMap.ofList]
def
Lean.HashMap.ofList
{α : Type u}
{β : Type v}
[BEq α]
[Hashable α]
(l : List (α × β))
:
Lean.HashMap α β
Builds a HashMap
from a list of key-value pairs. Values of duplicated keys are replaced by their respective last occurrences.
Equations
- Lean.HashMap.ofList l = List.foldl (fun (m : Lean.HashMap α β) (p : α × β) => m.insert p.fst p.snd) Lean.HashMap.empty l
Instances For
@[deprecated]
def
Lean.HashMap.ofListWith
{α : Type u}
{β : Type v}
[BEq α]
[Hashable α]
(l : List (α × β))
(f : β → β → β)
:
Lean.HashMap α β
Variant of ofList
which accepts a function that combines values of duplicated keys.