Pi instances for multiplicative actions #
This file defines instances for MulAction
and related structures on Pi
types.
See also #
theorem
Pi.isScalarTower
{ι : Type u_1}
{M : Type u_2}
{N : Type u_3}
{α : ι → Type u_4}
[SMul M N]
[(i : ι) → SMul N (α i)]
[(i : ι) → SMul M (α i)]
[∀ (i : ι), IsScalarTower M N (α i)]
:
IsScalarTower M N ((i : ι) → α i)
theorem
Pi.vaddAssocClass
{ι : Type u_1}
{M : Type u_2}
{N : Type u_3}
{α : ι → Type u_4}
[VAdd M N]
[(i : ι) → VAdd N (α i)]
[(i : ι) → VAdd M (α i)]
[∀ (i : ι), VAddAssocClass M N (α i)]
:
VAddAssocClass M N ((i : ι) → α i)
theorem
Pi.isScalarTower'
{ι : Type u_1}
{M : Type u_2}
{α : ι → Type u_4}
{β : ι → Type u_5}
[(i : ι) → SMul M (α i)]
[(i : ι) → SMul (α i) (β i)]
[(i : ι) → SMul M (β i)]
[∀ (i : ι), IsScalarTower M (α i) (β i)]
:
IsScalarTower M ((i : ι) → α i) ((i : ι) → β i)
theorem
Pi.vaddAssocClass'
{ι : Type u_1}
{M : Type u_2}
{α : ι → Type u_4}
{β : ι → Type u_5}
[(i : ι) → VAdd M (α i)]
[(i : ι) → VAdd (α i) (β i)]
[(i : ι) → VAdd M (β i)]
[∀ (i : ι), VAddAssocClass M (α i) (β i)]
:
VAddAssocClass M ((i : ι) → α i) ((i : ι) → β i)
theorem
Pi.isScalarTower''
{ι : Type u_1}
{α : ι → Type u_4}
{β : ι → Type u_5}
{γ : ι → Type u_6}
[(i : ι) → SMul (α i) (β i)]
[(i : ι) → SMul (β i) (γ i)]
[(i : ι) → SMul (α i) (γ i)]
[∀ (i : ι), IsScalarTower (α i) (β i) (γ i)]
:
IsScalarTower ((i : ι) → α i) ((i : ι) → β i) ((i : ι) → γ i)
theorem
Pi.vaddAssocClass''
{ι : Type u_1}
{α : ι → Type u_4}
{β : ι → Type u_5}
{γ : ι → Type u_6}
[(i : ι) → VAdd (α i) (β i)]
[(i : ι) → VAdd (β i) (γ i)]
[(i : ι) → VAdd (α i) (γ i)]
[∀ (i : ι), VAddAssocClass (α i) (β i) (γ i)]
:
VAddAssocClass ((i : ι) → α i) ((i : ι) → β i) ((i : ι) → γ i)
theorem
Pi.smulCommClass
{ι : Type u_1}
{M : Type u_2}
{N : Type u_3}
{α : ι → Type u_4}
[(i : ι) → SMul M (α i)]
[(i : ι) → SMul N (α i)]
[∀ (i : ι), SMulCommClass M N (α i)]
:
SMulCommClass M N ((i : ι) → α i)
theorem
Pi.vaddCommClass
{ι : Type u_1}
{M : Type u_2}
{N : Type u_3}
{α : ι → Type u_4}
[(i : ι) → VAdd M (α i)]
[(i : ι) → VAdd N (α i)]
[∀ (i : ι), VAddCommClass M N (α i)]
:
VAddCommClass M N ((i : ι) → α i)
theorem
Pi.smulCommClass'
{ι : Type u_1}
{M : Type u_2}
{α : ι → Type u_4}
{β : ι → Type u_5}
[(i : ι) → SMul M (β i)]
[(i : ι) → SMul (α i) (β i)]
[∀ (i : ι), SMulCommClass M (α i) (β i)]
:
SMulCommClass M ((i : ι) → α i) ((i : ι) → β i)
theorem
Pi.vaddCommClass'
{ι : Type u_1}
{M : Type u_2}
{α : ι → Type u_4}
{β : ι → Type u_5}
[(i : ι) → VAdd M (β i)]
[(i : ι) → VAdd (α i) (β i)]
[∀ (i : ι), VAddCommClass M (α i) (β i)]
:
VAddCommClass M ((i : ι) → α i) ((i : ι) → β i)
theorem
Pi.smulCommClass''
{ι : Type u_1}
{α : ι → Type u_4}
{β : ι → Type u_5}
{γ : ι → Type u_6}
[(i : ι) → SMul (β i) (γ i)]
[(i : ι) → SMul (α i) (γ i)]
[∀ (i : ι), SMulCommClass (α i) (β i) (γ i)]
:
SMulCommClass ((i : ι) → α i) ((i : ι) → β i) ((i : ι) → γ i)
theorem
Pi.vaddCommClass''
{ι : Type u_1}
{α : ι → Type u_4}
{β : ι → Type u_5}
{γ : ι → Type u_6}
[(i : ι) → VAdd (β i) (γ i)]
[(i : ι) → VAdd (α i) (γ i)]
[∀ (i : ι), VAddCommClass (α i) (β i) (γ i)]
:
VAddCommClass ((i : ι) → α i) ((i : ι) → β i) ((i : ι) → γ i)
theorem
Pi.isCentralScalar
{ι : Type u_1}
{M : Type u_2}
{α : ι → Type u_4}
[(i : ι) → SMul M (α i)]
[(i : ι) → SMul Mᵐᵒᵖ (α i)]
[∀ (i : ι), IsCentralScalar M (α i)]
:
IsCentralScalar M ((i : ι) → α i)
theorem
Pi.isCentralVAdd
{ι : Type u_1}
{M : Type u_2}
{α : ι → Type u_4}
[(i : ι) → VAdd M (α i)]
[(i : ι) → VAdd Mᵃᵒᵖ (α i)]
[∀ (i : ι), IsCentralVAdd M (α i)]
:
IsCentralVAdd M ((i : ι) → α i)
theorem
Pi.faithfulSMul_at
{ι : Type u_1}
{M : Type u_2}
{α : ι → Type u_4}
[(i : ι) → SMul M (α i)]
[∀ (i : ι), Nonempty (α i)]
(i : ι)
[FaithfulSMul M (α i)]
:
FaithfulSMul M ((i : ι) → α i)
If α i
has a faithful scalar action for a given i
, then so does Π i, α i
. This is
not an instance as i
cannot be inferred.
theorem
Pi.faithfulVAdd_at
{ι : Type u_1}
{M : Type u_2}
{α : ι → Type u_4}
[(i : ι) → VAdd M (α i)]
[∀ (i : ι), Nonempty (α i)]
(i : ι)
[FaithfulVAdd M (α i)]
:
FaithfulVAdd M ((i : ι) → α i)
If α i
has a faithful additive action for a given i
, then
so does Π i, α i
. This is not an instance as i
cannot be inferred
theorem
Pi.faithfulSMul
{ι : Type u_1}
{M : Type u_2}
{α : ι → Type u_4}
[Nonempty ι]
[(i : ι) → SMul M (α i)]
[∀ (i : ι), Nonempty (α i)]
[∀ (i : ι), FaithfulSMul M (α i)]
:
FaithfulSMul M ((i : ι) → α i)
theorem
Pi.faithfulVAdd
{ι : Type u_1}
{M : Type u_2}
{α : ι → Type u_4}
[Nonempty ι]
[(i : ι) → VAdd M (α i)]
[∀ (i : ι), Nonempty (α i)]
[∀ (i : ι), FaithfulVAdd M (α i)]
:
FaithfulVAdd M ((i : ι) → α i)
instance
Pi.mulAction
{ι : Type u_1}
{α : ι → Type u_4}
(M : Type u_7)
{m : Monoid M}
[(i : ι) → MulAction M (α i)]
:
MulAction M ((i : ι) → α i)
Equations
- Pi.mulAction M = MulAction.mk ⋯ ⋯
instance
Pi.addAction
{ι : Type u_1}
{α : ι → Type u_4}
(M : Type u_7)
{m : AddMonoid M}
[(i : ι) → AddAction M (α i)]
:
AddAction M ((i : ι) → α i)
Equations
- Pi.addAction M = AddAction.mk ⋯ ⋯
instance
Pi.mulAction'
{ι : Type u_1}
{α : ι → Type u_4}
{β : ι → Type u_5}
{m : (i : ι) → Monoid (α i)}
[(i : ι) → MulAction (α i) (β i)]
:
MulAction ((i : ι) → α i) ((i : ι) → β i)
Equations
- Pi.mulAction' = MulAction.mk ⋯ ⋯
instance
Pi.addAction'
{ι : Type u_1}
{α : ι → Type u_4}
{β : ι → Type u_5}
{m : (i : ι) → AddMonoid (α i)}
[(i : ι) → AddAction (α i) (β i)]
:
AddAction ((i : ι) → α i) ((i : ι) → β i)
Equations
- Pi.addAction' = AddAction.mk ⋯ ⋯
theorem
Function.smulCommClass
{ι : Type u_1}
{M : Type u_2}
{N : Type u_3}
{α : Type u_7}
[SMul M α]
[SMul N α]
[SMulCommClass M N α]
:
SMulCommClass M N (ι → α)
Non-dependent version of Pi.smulCommClass
. Lean gets confused by the dependent instance if
this is not present.
theorem
Function.vaddCommClass
{ι : Type u_1}
{M : Type u_2}
{N : Type u_3}
{α : Type u_7}
[VAdd M α]
[VAdd N α]
[VAddCommClass M N α]
:
VAddCommClass M N (ι → α)
Non-dependent version of Pi.vaddCommClass
. Lean gets confused by the dependent
instance if this is not present.
theorem
Function.update_smul
{ι : Type u_1}
{M : Type u_2}
{α : ι → Type u_4}
[(i : ι) → SMul M (α i)]
[DecidableEq ι]
(c : M)
(f₁ : (i : ι) → α i)
(i : ι)
(x₁ : α i)
:
Function.update (c • f₁) i (c • x₁) = c • Function.update f₁ i x₁
theorem
Function.update_vadd
{ι : Type u_1}
{M : Type u_2}
{α : ι → Type u_4}
[(i : ι) → VAdd M (α i)]
[DecidableEq ι]
(c : M)
(f₁ : (i : ι) → α i)
(i : ι)
(x₁ : α i)
:
Function.update (c +ᵥ f₁) i (c +ᵥ x₁) = c +ᵥ Function.update f₁ i x₁
theorem
Function.extend_smul
{ι : Type u_1}
{M : Type u_7}
{α : Type u_8}
{β : Type u_9}
[SMul M β]
(r : M)
(f : ι → α)
(g : ι → β)
(e : α → β)
:
Function.extend f (r • g) (r • e) = r • Function.extend f g e
theorem
Function.extend_vadd
{ι : Type u_1}
{M : Type u_7}
{α : Type u_8}
{β : Type u_9}
[VAdd M β]
(r : M)
(f : ι → α)
(g : ι → β)
(e : α → β)
:
Function.extend f (r +ᵥ g) (r +ᵥ e) = r +ᵥ Function.extend f g e