Documentation

Mathlib.Algebra.Group.Subgroup.Defs

Subgroups #

This file defines multiplicative and additive subgroups as an extension of submonoids, in a bundled form (unbundled subgroups are in Deprecated/Subgroups.lean).

Special thanks goes to Amelia Livingston and Yury Kudryashov for their help and inspiration.

Main definitions #

Notation used here:

Definitions in the file:

Implementation notes #

Subgroup inclusion is denoted rather than , although is defined as membership of a subgroup's underlying set.

Tags #

subgroup, subgroups

class InvMemClass (S : Type u_3) (G : outParam (Type u_4)) [Inv G] [SetLike S G] :

InvMemClass S G states S is a type of subsets s ⊆ G closed under inverses.

  • inv_mem : ∀ {s : S} {x : G}, x sx⁻¹ s

    s is closed under inverses

Instances
    class NegMemClass (S : Type u_3) (G : outParam (Type u_4)) [Neg G] [SetLike S G] :

    NegMemClass S G states S is a type of subsets s ⊆ G closed under negation.

    • neg_mem : ∀ {s : S} {x : G}, x s-x s

      s is closed under negation

    Instances
      class SubgroupClass (S : Type u_3) (G : outParam (Type u_4)) [DivInvMonoid G] [SetLike S G] extends SubmonoidClass S G, InvMemClass S G :

      SubgroupClass S G states S is a type of subsets s ⊆ G that are subgroups of G.

      Instances
        class AddSubgroupClass (S : Type u_3) (G : outParam (Type u_4)) [SubNegMonoid G] [SetLike S G] extends AddSubmonoidClass S G, NegMemClass S G :

        AddSubgroupClass S G states S is a type of subsets s ⊆ G that are additive subgroups of G.

        Instances
          @[simp]
          theorem inv_mem_iff {S : Type u_3} {G : Type u_4} [InvolutiveInv G] {x✝ : SetLike S G} [InvMemClass S G] {H : S} {x : G} :
          x⁻¹ H x H
          @[simp]
          theorem neg_mem_iff {S : Type u_3} {G : Type u_4} [InvolutiveNeg G] {x✝ : SetLike S G} [NegMemClass S G] {H : S} {x : G} :
          -x H x H
          theorem div_mem {M : Type u_3} {S : Type u_4} [DivInvMonoid M] [SetLike S M] [hSM : SubgroupClass S M] {H : S} {x y : M} (hx : x H) (hy : y H) :
          x / y H

          A subgroup is closed under division.

          theorem sub_mem {M : Type u_3} {S : Type u_4} [SubNegMonoid M] [SetLike S M] [hSM : AddSubgroupClass S M] {H : S} {x y : M} (hx : x H) (hy : y H) :
          x - y H

          An additive subgroup is closed under subtraction.

          theorem zpow_mem {M : Type u_3} {S : Type u_4} [DivInvMonoid M] [SetLike S M] [hSM : SubgroupClass S M] {K : S} {x : M} (hx : x K) (n : ) :
          x ^ n K
          theorem zsmul_mem {M : Type u_3} {S : Type u_4} [SubNegMonoid M] [SetLike S M] [hSM : AddSubgroupClass S M] {K : S} {x : M} (hx : x K) (n : ) :
          n x K
          theorem exists_inv_mem_iff_exists_mem {G : Type u_1} [Group G] {S : Type u_4} {H : S} [SetLike S G] [SubgroupClass S G] {P : GProp} :
          (∃ xH, P x⁻¹) xH, P x
          theorem exists_neg_mem_iff_exists_mem {G : Type u_1} [AddGroup G] {S : Type u_4} {H : S} [SetLike S G] [AddSubgroupClass S G] {P : GProp} :
          (∃ xH, P (-x)) xH, P x
          theorem mul_mem_cancel_right {G : Type u_1} [Group G] {S : Type u_4} {H : S} [SetLike S G] [SubgroupClass S G] {x y : G} (h : x H) :
          y * x H y H
          theorem add_mem_cancel_right {G : Type u_1} [AddGroup G] {S : Type u_4} {H : S} [SetLike S G] [AddSubgroupClass S G] {x y : G} (h : x H) :
          y + x H y H
          theorem mul_mem_cancel_left {G : Type u_1} [Group G] {S : Type u_4} {H : S} [SetLike S G] [SubgroupClass S G] {x y : G} (h : x H) :
          x * y H y H
          theorem add_mem_cancel_left {G : Type u_1} [AddGroup G] {S : Type u_4} {H : S} [SetLike S G] [AddSubgroupClass S G] {x y : G} (h : x H) :
          x + y H y H
          instance InvMemClass.inv {G : Type u_1} {S : Type u_2} [Inv G] [SetLike S G] [InvMemClass S G] {H : S} :
          Inv H

          A subgroup of a group inherits an inverse.

          Equations
          • InvMemClass.inv = { inv := fun (a : H) => (↑a)⁻¹, }
          instance NegMemClass.neg {G : Type u_1} {S : Type u_2} [Neg G] [SetLike S G] [NegMemClass S G] {H : S} :
          Neg H

          An additive subgroup of an AddGroup inherits an inverse.

          Equations
          • NegMemClass.neg = { neg := fun (a : H) => -a, }
          @[simp]
          theorem InvMemClass.coe_inv {G : Type u_1} [Group G] {S : Type u_4} {H : S} [SetLike S G] [SubgroupClass S G] (x : H) :
          x⁻¹ = (↑x)⁻¹
          @[simp]
          theorem NegMemClass.coe_neg {G : Type u_1} [AddGroup G] {S : Type u_4} {H : S} [SetLike S G] [AddSubgroupClass S G] (x : H) :
          (-x) = -x
          theorem SubgroupClass.subset_union {G : Type u_1} [Group G] {S : Type u_4} [SetLike S G] [SubgroupClass S G] {H K L : S} :
          H K L H K H L
          theorem AddSubgroupClass.subset_union {G : Type u_1} [AddGroup G] {S : Type u_4} [SetLike S G] [AddSubgroupClass S G] {H K L : S} :
          H K L H K H L
          instance SubgroupClass.div {G : Type u_1} {S : Type u_2} [DivInvMonoid G] [SetLike S G] [SubgroupClass S G] {H : S} :
          Div H

          A subgroup of a group inherits a division

          Equations
          • SubgroupClass.div = { div := fun (a b : H) => a / b, }
          instance AddSubgroupClass.sub {G : Type u_1} {S : Type u_2} [SubNegMonoid G] [SetLike S G] [AddSubgroupClass S G] {H : S} :
          Sub H

          An additive subgroup of an AddGroup inherits a subtraction.

          Equations
          • AddSubgroupClass.sub = { sub := fun (a b : H) => a - b, }
          instance AddSubgroupClass.zsmul {M : Type u_5} {S : Type u_6} [SubNegMonoid M] [SetLike S M] [AddSubgroupClass S M] {H : S} :
          SMul H

          An additive subgroup of an AddGroup inherits an integer scaling.

          Equations
          • AddSubgroupClass.zsmul = { smul := fun (n : ) (a : H) => n a, }
          instance SubgroupClass.zpow {M : Type u_5} {S : Type u_6} [DivInvMonoid M] [SetLike S M] [SubgroupClass S M] {H : S} :
          Pow H

          A subgroup of a group inherits an integer power.

          Equations
          • SubgroupClass.zpow = { pow := fun (a : H) (n : ) => a ^ n, }
          @[simp]
          theorem SubgroupClass.coe_div {G : Type u_1} [Group G] {S : Type u_4} {H : S} [SetLike S G] [SubgroupClass S G] (x y : H) :
          (x / y) = x / y
          @[simp]
          theorem AddSubgroupClass.coe_sub {G : Type u_1} [AddGroup G] {S : Type u_4} {H : S} [SetLike S G] [AddSubgroupClass S G] (x y : H) :
          (x - y) = x - y
          @[instance 75]
          instance SubgroupClass.toGroup {G : Type u_1} [Group G] {S : Type u_4} (H : S) [SetLike S G] [SubgroupClass S G] :
          Group H

          A subgroup of a group inherits a group structure.

          Equations
          @[instance 75]
          instance AddSubgroupClass.toAddGroup {G : Type u_1} [AddGroup G] {S : Type u_4} (H : S) [SetLike S G] [AddSubgroupClass S G] :

          An additive subgroup of an AddGroup inherits an AddGroup structure.

          Equations
          @[instance 75]
          instance SubgroupClass.toCommGroup {S : Type u_4} (H : S) {G : Type u_5} [CommGroup G] [SetLike S G] [SubgroupClass S G] :

          A subgroup of a CommGroup is a CommGroup.

          Equations
          @[instance 75]
          instance AddSubgroupClass.toAddCommGroup {S : Type u_4} (H : S) {G : Type u_5} [AddCommGroup G] [SetLike S G] [AddSubgroupClass S G] :

          An additive subgroup of an AddCommGroup is an AddCommGroup.

          Equations
          def SubgroupClass.subtype {G : Type u_1} [Group G] {S : Type u_4} (H : S) [SetLike S G] [SubgroupClass S G] :
          H →* G

          The natural group hom from a subgroup of group G to G.

          Equations
          • H = { toFun := Subtype.val, map_one' := , map_mul' := }
          Instances For
            def AddSubgroupClass.subtype {G : Type u_1} [AddGroup G] {S : Type u_4} (H : S) [SetLike S G] [AddSubgroupClass S G] :
            H →+ G

            The natural group hom from an additive subgroup of AddGroup G to G.

            Equations
            • H = { toFun := Subtype.val, map_zero' := , map_add' := }
            Instances For
              @[simp]
              theorem SubgroupClass.coeSubtype {G : Type u_1} [Group G] {S : Type u_4} (H : S) [SetLike S G] [SubgroupClass S G] :
              H = Subtype.val
              @[simp]
              theorem AddSubgroupClass.coeSubtype {G : Type u_1} [AddGroup G] {S : Type u_4} (H : S) [SetLike S G] [AddSubgroupClass S G] :
              H = Subtype.val
              @[simp]
              theorem SubgroupClass.coe_pow {G : Type u_1} [Group G] {S : Type u_4} {H : S} [SetLike S G] [SubgroupClass S G] (x : H) (n : ) :
              (x ^ n) = x ^ n
              @[simp]
              theorem AddSubgroupClass.coe_nsmul {G : Type u_1} [AddGroup G] {S : Type u_4} {H : S} [SetLike S G] [AddSubgroupClass S G] (x : H) (n : ) :
              (n x) = n x
              @[simp]
              theorem SubgroupClass.coe_zpow {G : Type u_1} [Group G] {S : Type u_4} {H : S} [SetLike S G] [SubgroupClass S G] (x : H) (n : ) :
              (x ^ n) = x ^ n
              @[simp]
              theorem AddSubgroupClass.coe_zsmul {G : Type u_1} [AddGroup G] {S : Type u_4} {H : S} [SetLike S G] [AddSubgroupClass S G] (x : H) (n : ) :
              (n x) = n x
              def SubgroupClass.inclusion {G : Type u_1} [Group G] {S : Type u_4} [SetLike S G] [SubgroupClass S G] {H K : S} (h : H K) :
              H →* K

              The inclusion homomorphism from a subgroup H contained in K to K.

              Equations
              Instances For
                def AddSubgroupClass.inclusion {G : Type u_1} [AddGroup G] {S : Type u_4} [SetLike S G] [AddSubgroupClass S G] {H K : S} (h : H K) :
                H →+ K

                The inclusion homomorphism from an additive subgroup H contained in K to K.

                Equations
                Instances For
                  @[simp]
                  theorem SubgroupClass.inclusion_self {G : Type u_1} [Group G] {S : Type u_4} {H : S} [SetLike S G] [SubgroupClass S G] (x : H) :
                  @[simp]
                  theorem AddSubgroupClass.inclusion_self {G : Type u_1} [AddGroup G] {S : Type u_4} {H : S} [SetLike S G] [AddSubgroupClass S G] (x : H) :
                  @[simp]
                  theorem SubgroupClass.inclusion_mk {G : Type u_1} [Group G] {S : Type u_4} {H K : S} [SetLike S G] [SubgroupClass S G] {h : H K} (x : G) (hx : x H) :
                  (SubgroupClass.inclusion h) x, hx = x,
                  @[simp]
                  theorem AddSubgroupClass.inclusion_mk {G : Type u_1} [AddGroup G] {S : Type u_4} {H K : S} [SetLike S G] [AddSubgroupClass S G] {h : H K} (x : G) (hx : x H) :
                  (AddSubgroupClass.inclusion h) x, hx = x,
                  theorem SubgroupClass.inclusion_right {G : Type u_1} [Group G] {S : Type u_4} {H K : S} [SetLike S G] [SubgroupClass S G] (h : H K) (x : K) (hx : x H) :
                  (SubgroupClass.inclusion h) x, hx = x
                  theorem AddSubgroupClass.inclusion_right {G : Type u_1} [AddGroup G] {S : Type u_4} {H K : S} [SetLike S G] [AddSubgroupClass S G] (h : H K) (x : K) (hx : x H) :
                  (AddSubgroupClass.inclusion h) x, hx = x
                  @[simp]
                  theorem SubgroupClass.inclusion_inclusion {G : Type u_1} [Group G] {S : Type u_4} {H K : S} [SetLike S G] [SubgroupClass S G] {L : S} (hHK : H K) (hKL : K L) (x : H) :
                  @[simp]
                  theorem SubgroupClass.coe_inclusion {G : Type u_1} [Group G] {S : Type u_4} [SetLike S G] [SubgroupClass S G] {H K : S} {h : H K} (a : H) :
                  ((SubgroupClass.inclusion h) a) = a
                  @[simp]
                  theorem AddSubgroupClass.coe_inclusion {G : Type u_1} [AddGroup G] {S : Type u_4} [SetLike S G] [AddSubgroupClass S G] {H K : S} {h : H K} (a : H) :
                  @[simp]
                  theorem SubgroupClass.subtype_comp_inclusion {G : Type u_1} [Group G] {S : Type u_4} [SetLike S G] [SubgroupClass S G] {H K : S} (hH : H K) :
                  (↑K).comp (SubgroupClass.inclusion hH) = H
                  @[simp]
                  theorem AddSubgroupClass.subtype_comp_inclusion {G : Type u_1} [AddGroup G] {S : Type u_4} [SetLike S G] [AddSubgroupClass S G] {H K : S} (hH : H K) :
                  (↑K).comp (AddSubgroupClass.inclusion hH) = H
                  structure Subgroup (G : Type u_3) [Group G] extends Submonoid G :
                  Type u_3

                  A subgroup of a group G is a subset containing 1, closed under multiplication and closed under multiplicative inverse.

                  Instances For
                    structure AddSubgroup (G : Type u_3) [AddGroup G] extends AddSubmonoid G :
                    Type u_3

                    An additive subgroup of an additive group G is a subset containing 0, closed under addition and additive inverse.

                    Instances For
                      instance Subgroup.instSetLike {G : Type u_1} [Group G] :
                      Equations
                      • Subgroup.instSetLike = { coe := fun (s : Subgroup G) => s.carrier, coe_injective' := }
                      Equations
                      • AddSubgroup.instSetLike = { coe := fun (s : AddSubgroup G) => s.carrier, coe_injective' := }
                      theorem Subgroup.mem_carrier {G : Type u_1} [Group G] {s : Subgroup G} {x : G} :
                      x s.carrier x s
                      theorem AddSubgroup.mem_carrier {G : Type u_1} [AddGroup G] {s : AddSubgroup G} {x : G} :
                      x s.carrier x s
                      @[simp]
                      theorem Subgroup.mem_mk {G : Type u_1} [Group G] {s : Set G} {x : G} (h_one : ∀ {a b : G}, a sb sa * b s) (h_mul : s 1) (h_inv : ∀ {x : G}, x { carrier := s, mul_mem' := h_one, one_mem' := h_mul }.carrierx⁻¹ { carrier := s, mul_mem' := h_one, one_mem' := h_mul }.carrier) :
                      x { carrier := s, mul_mem' := h_one, one_mem' := h_mul, inv_mem' := h_inv } x s
                      @[simp]
                      theorem AddSubgroup.mem_mk {G : Type u_1} [AddGroup G] {s : Set G} {x : G} (h_one : ∀ {a b : G}, a sb sa + b s) (h_mul : s 0) (h_inv : ∀ {x : G}, x { carrier := s, add_mem' := h_one, zero_mem' := h_mul }.carrier-x { carrier := s, add_mem' := h_one, zero_mem' := h_mul }.carrier) :
                      x { carrier := s, add_mem' := h_one, zero_mem' := h_mul, neg_mem' := h_inv } x s
                      @[simp]
                      theorem Subgroup.coe_set_mk {G : Type u_1} [Group G] {s : Set G} (h_one : ∀ {a b : G}, a sb sa * b s) (h_mul : s 1) (h_inv : ∀ {x : G}, x { carrier := s, mul_mem' := h_one, one_mem' := h_mul }.carrierx⁻¹ { carrier := s, mul_mem' := h_one, one_mem' := h_mul }.carrier) :
                      { carrier := s, mul_mem' := h_one, one_mem' := h_mul, inv_mem' := h_inv } = s
                      @[simp]
                      theorem AddSubgroup.coe_set_mk {G : Type u_1} [AddGroup G] {s : Set G} (h_one : ∀ {a b : G}, a sb sa + b s) (h_mul : s 0) (h_inv : ∀ {x : G}, x { carrier := s, add_mem' := h_one, zero_mem' := h_mul }.carrier-x { carrier := s, add_mem' := h_one, zero_mem' := h_mul }.carrier) :
                      { carrier := s, add_mem' := h_one, zero_mem' := h_mul, neg_mem' := h_inv } = s
                      @[simp]
                      theorem Subgroup.mk_le_mk {G : Type u_1} [Group G] {s t : Set G} (h_one : ∀ {a b : G}, a sb sa * b s) (h_mul : s 1) (h_inv : ∀ {x : G}, x { carrier := s, mul_mem' := h_one, one_mem' := h_mul }.carrierx⁻¹ { carrier := s, mul_mem' := h_one, one_mem' := h_mul }.carrier) (h_one' : ∀ {a b : G}, a tb ta * b t) (h_mul' : t 1) (h_inv' : ∀ {x : G}, x { carrier := t, mul_mem' := h_one', one_mem' := h_mul' }.carrierx⁻¹ { carrier := t, mul_mem' := h_one', one_mem' := h_mul' }.carrier) :
                      { carrier := s, mul_mem' := h_one, one_mem' := h_mul, inv_mem' := h_inv } { carrier := t, mul_mem' := h_one', one_mem' := h_mul', inv_mem' := h_inv' } s t
                      @[simp]
                      theorem AddSubgroup.mk_le_mk {G : Type u_1} [AddGroup G] {s t : Set G} (h_one : ∀ {a b : G}, a sb sa + b s) (h_mul : s 0) (h_inv : ∀ {x : G}, x { carrier := s, add_mem' := h_one, zero_mem' := h_mul }.carrier-x { carrier := s, add_mem' := h_one, zero_mem' := h_mul }.carrier) (h_one' : ∀ {a b : G}, a tb ta + b t) (h_mul' : t 0) (h_inv' : ∀ {x : G}, x { carrier := t, add_mem' := h_one', zero_mem' := h_mul' }.carrier-x { carrier := t, add_mem' := h_one', zero_mem' := h_mul' }.carrier) :
                      { carrier := s, add_mem' := h_one, zero_mem' := h_mul, neg_mem' := h_inv } { carrier := t, add_mem' := h_one', zero_mem' := h_mul', neg_mem' := h_inv' } s t
                      @[simp]
                      theorem Subgroup.coe_toSubmonoid {G : Type u_1} [Group G] (K : Subgroup G) :
                      K.toSubmonoid = K
                      @[simp]
                      theorem AddSubgroup.coe_toAddSubmonoid {G : Type u_1} [AddGroup G] (K : AddSubgroup G) :
                      K.toAddSubmonoid = K
                      @[simp]
                      theorem Subgroup.mem_toSubmonoid {G : Type u_1} [Group G] (K : Subgroup G) (x : G) :
                      x K.toSubmonoid x K
                      @[simp]
                      theorem AddSubgroup.mem_toAddSubmonoid {G : Type u_1} [AddGroup G] (K : AddSubgroup G) (x : G) :
                      x K.toAddSubmonoid x K
                      theorem Subgroup.toSubmonoid_injective {G : Type u_1} [Group G] :
                      Function.Injective Subgroup.toSubmonoid
                      theorem AddSubgroup.toAddSubmonoid_injective {G : Type u_1} [AddGroup G] :
                      Function.Injective AddSubgroup.toAddSubmonoid
                      @[simp]
                      theorem Subgroup.toSubmonoid_eq {G : Type u_1} [Group G] {p q : Subgroup G} :
                      p.toSubmonoid = q.toSubmonoid p = q
                      @[simp]
                      theorem AddSubgroup.toAddSubmonoid_eq {G : Type u_1} [AddGroup G] {p q : AddSubgroup G} :
                      p.toAddSubmonoid = q.toAddSubmonoid p = q
                      theorem Subgroup.toSubmonoid_strictMono {G : Type u_1} [Group G] :
                      StrictMono Subgroup.toSubmonoid
                      theorem AddSubgroup.toAddSubmonoid_strictMono {G : Type u_1} [AddGroup G] :
                      StrictMono AddSubgroup.toAddSubmonoid
                      theorem Subgroup.toSubmonoid_mono {G : Type u_1} [Group G] :
                      Monotone Subgroup.toSubmonoid
                      theorem AddSubgroup.toAddSubmonoid_mono {G : Type u_1} [AddGroup G] :
                      Monotone AddSubgroup.toAddSubmonoid
                      @[simp]
                      theorem Subgroup.toSubmonoid_le {G : Type u_1} [Group G] {p q : Subgroup G} :
                      p.toSubmonoid q.toSubmonoid p q
                      @[simp]
                      theorem AddSubgroup.toAddSubmonoid_le {G : Type u_1} [AddGroup G] {p q : AddSubgroup G} :
                      p.toAddSubmonoid q.toAddSubmonoid p q
                      @[simp]
                      theorem Subgroup.coe_nonempty {G : Type u_1} [Group G] (s : Subgroup G) :
                      (↑s).Nonempty
                      @[simp]
                      theorem AddSubgroup.coe_nonempty {G : Type u_1} [AddGroup G] (s : AddSubgroup G) :
                      (↑s).Nonempty
                      def Subgroup.copy {G : Type u_1} [Group G] (K : Subgroup G) (s : Set G) (hs : s = K) :

                      Copy of a subgroup with a new carrier equal to the old one. Useful to fix definitional equalities.

                      Equations
                      • K.copy s hs = { carrier := s, mul_mem' := , one_mem' := , inv_mem' := }
                      Instances For
                        def AddSubgroup.copy {G : Type u_1} [AddGroup G] (K : AddSubgroup G) (s : Set G) (hs : s = K) :

                        Copy of an additive subgroup with a new carrier equal to the old one. Useful to fix definitional equalities

                        Equations
                        • K.copy s hs = { carrier := s, add_mem' := , zero_mem' := , neg_mem' := }
                        Instances For
                          @[simp]
                          theorem Subgroup.coe_copy {G : Type u_1} [Group G] (K : Subgroup G) (s : Set G) (hs : s = K) :
                          (K.copy s hs) = s
                          @[simp]
                          theorem AddSubgroup.coe_copy {G : Type u_1} [AddGroup G] (K : AddSubgroup G) (s : Set G) (hs : s = K) :
                          (K.copy s hs) = s
                          theorem Subgroup.copy_eq {G : Type u_1} [Group G] (K : Subgroup G) (s : Set G) (hs : s = K) :
                          K.copy s hs = K
                          theorem AddSubgroup.copy_eq {G : Type u_1} [AddGroup G] (K : AddSubgroup G) (s : Set G) (hs : s = K) :
                          K.copy s hs = K
                          theorem AddSubgroup.ext {G : Type u_1} [AddGroup G] {H K : AddSubgroup G} (h : ∀ (x : G), x H x K) :
                          H = K

                          Two AddSubgroups are equal if they have the same elements.

                          theorem Subgroup.ext {G : Type u_1} [Group G] {H K : Subgroup G} (h : ∀ (x : G), x H x K) :
                          H = K

                          Two subgroups are equal if they have the same elements.

                          theorem Subgroup.one_mem {G : Type u_1} [Group G] (H : Subgroup G) :
                          1 H

                          A subgroup contains the group's 1.

                          theorem AddSubgroup.zero_mem {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :
                          0 H

                          An AddSubgroup contains the group's 0.

                          theorem Subgroup.mul_mem {G : Type u_1} [Group G] (H : Subgroup G) {x y : G} :
                          x Hy Hx * y H

                          A subgroup is closed under multiplication.

                          theorem AddSubgroup.add_mem {G : Type u_1} [AddGroup G] (H : AddSubgroup G) {x y : G} :
                          x Hy Hx + y H

                          An AddSubgroup is closed under addition.

                          theorem Subgroup.inv_mem {G : Type u_1} [Group G] (H : Subgroup G) {x : G} :
                          x Hx⁻¹ H

                          A subgroup is closed under inverse.

                          theorem AddSubgroup.neg_mem {G : Type u_1} [AddGroup G] (H : AddSubgroup G) {x : G} :
                          x H-x H

                          An AddSubgroup is closed under inverse.

                          theorem Subgroup.div_mem {G : Type u_1} [Group G] (H : Subgroup G) {x y : G} (hx : x H) (hy : y H) :
                          x / y H

                          A subgroup is closed under division.

                          theorem AddSubgroup.sub_mem {G : Type u_1} [AddGroup G] (H : AddSubgroup G) {x y : G} (hx : x H) (hy : y H) :
                          x - y H

                          An AddSubgroup is closed under subtraction.

                          theorem Subgroup.inv_mem_iff {G : Type u_1} [Group G] (H : Subgroup G) {x : G} :
                          x⁻¹ H x H
                          theorem AddSubgroup.neg_mem_iff {G : Type u_1} [AddGroup G] (H : AddSubgroup G) {x : G} :
                          -x H x H
                          theorem Subgroup.exists_inv_mem_iff_exists_mem {G : Type u_1} [Group G] (K : Subgroup G) {P : GProp} :
                          (∃ xK, P x⁻¹) xK, P x
                          theorem AddSubgroup.exists_neg_mem_iff_exists_mem {G : Type u_1} [AddGroup G] (K : AddSubgroup G) {P : GProp} :
                          (∃ xK, P (-x)) xK, P x
                          theorem Subgroup.mul_mem_cancel_right {G : Type u_1} [Group G] (H : Subgroup G) {x y : G} (h : x H) :
                          y * x H y H
                          theorem AddSubgroup.add_mem_cancel_right {G : Type u_1} [AddGroup G] (H : AddSubgroup G) {x y : G} (h : x H) :
                          y + x H y H
                          theorem Subgroup.mul_mem_cancel_left {G : Type u_1} [Group G] (H : Subgroup G) {x y : G} (h : x H) :
                          x * y H y H
                          theorem AddSubgroup.add_mem_cancel_left {G : Type u_1} [AddGroup G] (H : AddSubgroup G) {x y : G} (h : x H) :
                          x + y H y H
                          theorem Subgroup.pow_mem {G : Type u_1} [Group G] (K : Subgroup G) {x : G} (hx : x K) (n : ) :
                          x ^ n K
                          theorem AddSubgroup.nsmul_mem {G : Type u_1} [AddGroup G] (K : AddSubgroup G) {x : G} (hx : x K) (n : ) :
                          n x K
                          theorem Subgroup.zpow_mem {G : Type u_1} [Group G] (K : Subgroup G) {x : G} (hx : x K) (n : ) :
                          x ^ n K
                          theorem AddSubgroup.zsmul_mem {G : Type u_1} [AddGroup G] (K : AddSubgroup G) {x : G} (hx : x K) (n : ) :
                          n x K
                          def Subgroup.ofDiv {G : Type u_1} [Group G] (s : Set G) (hsn : s.Nonempty) (hs : xs, ys, x * y⁻¹ s) :

                          Construct a subgroup from a nonempty set that is closed under division.

                          Equations
                          • Subgroup.ofDiv s hsn hs = { carrier := s, mul_mem' := , one_mem' := , inv_mem' := }
                          Instances For
                            def AddSubgroup.ofSub {G : Type u_1} [AddGroup G] (s : Set G) (hsn : s.Nonempty) (hs : xs, ys, x + -y s) :

                            Construct a subgroup from a nonempty set that is closed under subtraction

                            Equations
                            • AddSubgroup.ofSub s hsn hs = { carrier := s, add_mem' := , zero_mem' := , neg_mem' := }
                            Instances For
                              instance Subgroup.mul {G : Type u_1} [Group G] (H : Subgroup G) :
                              Mul H

                              A subgroup of a group inherits a multiplication.

                              Equations
                              • H.mul = H.mul
                              instance AddSubgroup.add {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :
                              Add H

                              An AddSubgroup of an AddGroup inherits an addition.

                              Equations
                              • H.add = H.add
                              instance Subgroup.one {G : Type u_1} [Group G] (H : Subgroup G) :
                              One H

                              A subgroup of a group inherits a 1.

                              Equations
                              • H.one = H.one
                              instance AddSubgroup.zero {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :
                              Zero H

                              An AddSubgroup of an AddGroup inherits a zero.

                              Equations
                              • H.zero = H.zero
                              instance Subgroup.inv {G : Type u_1} [Group G] (H : Subgroup G) :
                              Inv H

                              A subgroup of a group inherits an inverse.

                              Equations
                              • H.inv = { inv := fun (a : H) => (↑a)⁻¹, }
                              instance AddSubgroup.neg {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :
                              Neg H

                              An AddSubgroup of an AddGroup inherits an inverse.

                              Equations
                              • H.neg = { neg := fun (a : H) => -a, }
                              instance Subgroup.div {G : Type u_1} [Group G] (H : Subgroup G) :
                              Div H

                              A subgroup of a group inherits a division

                              Equations
                              • H.div = { div := fun (a b : H) => a / b, }
                              instance AddSubgroup.sub {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :
                              Sub H

                              An AddSubgroup of an AddGroup inherits a subtraction.

                              Equations
                              • H.sub = { sub := fun (a b : H) => a - b, }
                              instance AddSubgroup.nsmul {G : Type u_3} [AddGroup G] {H : AddSubgroup G} :
                              SMul H

                              An AddSubgroup of an AddGroup inherits a natural scaling.

                              Equations
                              • AddSubgroup.nsmul = { smul := fun (n : ) (a : H) => n a, }
                              instance Subgroup.npow {G : Type u_1} [Group G] (H : Subgroup G) :
                              Pow H

                              A subgroup of a group inherits a natural power

                              Equations
                              • H.npow = { pow := fun (a : H) (n : ) => a ^ n, }
                              instance AddSubgroup.zsmul {G : Type u_3} [AddGroup G] {H : AddSubgroup G} :
                              SMul H

                              An AddSubgroup of an AddGroup inherits an integer scaling.

                              Equations
                              • AddSubgroup.zsmul = { smul := fun (n : ) (a : H) => n a, }
                              instance Subgroup.zpow {G : Type u_1} [Group G] (H : Subgroup G) :
                              Pow H

                              A subgroup of a group inherits an integer power

                              Equations
                              • H.zpow = { pow := fun (a : H) (n : ) => a ^ n, }
                              @[simp]
                              theorem Subgroup.coe_mul {G : Type u_1} [Group G] (H : Subgroup G) (x y : H) :
                              (x * y) = x * y
                              @[simp]
                              theorem AddSubgroup.coe_add {G : Type u_1} [AddGroup G] (H : AddSubgroup G) (x y : H) :
                              (x + y) = x + y
                              @[simp]
                              theorem Subgroup.coe_one {G : Type u_1} [Group G] (H : Subgroup G) :
                              1 = 1
                              @[simp]
                              theorem AddSubgroup.coe_zero {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :
                              0 = 0
                              @[simp]
                              theorem Subgroup.coe_inv {G : Type u_1} [Group G] (H : Subgroup G) (x : H) :
                              x⁻¹ = (↑x)⁻¹
                              @[simp]
                              theorem AddSubgroup.coe_neg {G : Type u_1} [AddGroup G] (H : AddSubgroup G) (x : H) :
                              (-x) = -x
                              @[simp]
                              theorem Subgroup.coe_div {G : Type u_1} [Group G] (H : Subgroup G) (x y : H) :
                              (x / y) = x / y
                              @[simp]
                              theorem AddSubgroup.coe_sub {G : Type u_1} [AddGroup G] (H : AddSubgroup G) (x y : H) :
                              (x - y) = x - y
                              theorem Subgroup.coe_mk {G : Type u_1} [Group G] (H : Subgroup G) (x : G) (hx : x H) :
                              x, hx = x
                              theorem AddSubgroup.coe_mk {G : Type u_1} [AddGroup G] (H : AddSubgroup G) (x : G) (hx : x H) :
                              x, hx = x
                              @[simp]
                              theorem Subgroup.coe_pow {G : Type u_1} [Group G] (H : Subgroup G) (x : H) (n : ) :
                              (x ^ n) = x ^ n
                              @[simp]
                              theorem AddSubgroup.coe_nsmul {G : Type u_1} [AddGroup G] (H : AddSubgroup G) (x : H) (n : ) :
                              (n x) = n x
                              theorem Subgroup.coe_zpow {G : Type u_1} [Group G] (H : Subgroup G) (x : H) (n : ) :
                              (x ^ n) = x ^ n
                              theorem AddSubgroup.coe_zsmul {G : Type u_1} [AddGroup G] (H : AddSubgroup G) (x : H) (n : ) :
                              (n x) = n x
                              @[simp]
                              theorem Subgroup.mk_eq_one {G : Type u_1} [Group G] (H : Subgroup G) {g : G} {h : g H} :
                              g, h = 1 g = 1
                              @[simp]
                              theorem AddSubgroup.mk_eq_zero {G : Type u_1} [AddGroup G] (H : AddSubgroup G) {g : G} {h : g H} :
                              g, h = 0 g = 0
                              instance Subgroup.toGroup {G : Type u_3} [Group G] (H : Subgroup G) :
                              Group H

                              A subgroup of a group inherits a group structure.

                              Equations
                              instance AddSubgroup.toAddGroup {G : Type u_3} [AddGroup G] (H : AddSubgroup G) :

                              An AddSubgroup of an AddGroup inherits an AddGroup structure.

                              Equations
                              instance Subgroup.toCommGroup {G : Type u_3} [CommGroup G] (H : Subgroup G) :

                              A subgroup of a CommGroup is a CommGroup.

                              Equations

                              An AddSubgroup of an AddCommGroup is an AddCommGroup.

                              Equations
                              def Subgroup.subtype {G : Type u_1} [Group G] (H : Subgroup G) :
                              H →* G

                              The natural group hom from a subgroup of group G to G.

                              Equations
                              • H.subtype = { toFun := Subtype.val, map_one' := , map_mul' := }
                              Instances For
                                def AddSubgroup.subtype {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :
                                H →+ G

                                The natural group hom from an AddSubgroup of AddGroup G to G.

                                Equations
                                • H.subtype = { toFun := Subtype.val, map_zero' := , map_add' := }
                                Instances For
                                  @[simp]
                                  theorem Subgroup.coeSubtype {G : Type u_1} [Group G] (H : Subgroup G) :
                                  H.subtype = Subtype.val
                                  @[simp]
                                  theorem AddSubgroup.coeSubtype {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :
                                  H.subtype = Subtype.val
                                  theorem Subgroup.subtype_injective {G : Type u_1} [Group G] (H : Subgroup G) :
                                  Function.Injective H.subtype
                                  def Subgroup.inclusion {G : Type u_1} [Group G] {H K : Subgroup G} (h : H K) :
                                  H →* K

                                  The inclusion homomorphism from a subgroup H contained in K to K.

                                  Equations
                                  Instances For
                                    def AddSubgroup.inclusion {G : Type u_1} [AddGroup G] {H K : AddSubgroup G} (h : H K) :
                                    H →+ K

                                    The inclusion homomorphism from an additive subgroup H contained in K to K.

                                    Equations
                                    Instances For
                                      @[simp]
                                      theorem Subgroup.coe_inclusion {G : Type u_1} [Group G] {H K : Subgroup G} {h : H K} (a : H) :
                                      ((Subgroup.inclusion h) a) = a
                                      @[simp]
                                      theorem AddSubgroup.coe_inclusion {G : Type u_1} [AddGroup G] {H K : AddSubgroup G} {h : H K} (a : H) :
                                      ((AddSubgroup.inclusion h) a) = a
                                      @[simp]
                                      theorem Subgroup.inclusion_inj {G : Type u_1} [Group G] {H K : Subgroup G} (h : H K) {x y : H} :
                                      @[simp]
                                      theorem AddSubgroup.inclusion_inj {G : Type u_1} [AddGroup G] {H K : AddSubgroup G} (h : H K) {x y : H} :
                                      @[simp]
                                      theorem Subgroup.subtype_comp_inclusion {G : Type u_1} [Group G] {H K : Subgroup G} (hH : H K) :
                                      K.subtype.comp (Subgroup.inclusion hH) = H.subtype
                                      @[simp]
                                      theorem AddSubgroup.subtype_comp_inclusion {G : Type u_1} [AddGroup G] {H K : AddSubgroup G} (hH : H K) :
                                      K.subtype.comp (AddSubgroup.inclusion hH) = H.subtype
                                      class Subgroup.Normal {G : Type u_1} [Group G] (H : Subgroup G) :

                                      A subgroup is normal if whenever n ∈ H, then g * n * g⁻¹ ∈ H for every g : G

                                      • conj_mem : nH, ∀ (g : G), g * n * g⁻¹ H

                                        N is closed under conjugation

                                      Instances
                                        class AddSubgroup.Normal {A : Type u_2} [AddGroup A] (H : AddSubgroup A) :

                                        An AddSubgroup is normal if whenever n ∈ H, then g + n - g ∈ H for every g : G

                                        • conj_mem : nH, ∀ (g : A), g + n + -g H

                                          N is closed under additive conjugation

                                        Instances
                                          theorem Subgroup.normal_of_comm {G : Type u_3} [CommGroup G] (H : Subgroup G) :
                                          H.Normal
                                          theorem AddSubgroup.normal_of_comm {G : Type u_3} [AddCommGroup G] (H : AddSubgroup G) :
                                          H.Normal
                                          theorem Subgroup.Normal.conj_mem' {G : Type u_1} [Group G] {H : Subgroup G} (nH : H.Normal) (n : G) (hn : n H) (g : G) :
                                          g⁻¹ * n * g H
                                          theorem AddSubgroup.Normal.conj_mem' {G : Type u_1} [AddGroup G] {H : AddSubgroup G} (nH : H.Normal) (n : G) (hn : n H) (g : G) :
                                          -g + n + g H
                                          theorem Subgroup.Normal.mem_comm {G : Type u_1} [Group G] {H : Subgroup G} (nH : H.Normal) {a b : G} (h : a * b H) :
                                          b * a H
                                          theorem AddSubgroup.Normal.mem_comm {G : Type u_1} [AddGroup G] {H : AddSubgroup G} (nH : H.Normal) {a b : G} (h : a + b H) :
                                          b + a H
                                          theorem Subgroup.Normal.mem_comm_iff {G : Type u_1} [Group G] {H : Subgroup G} (nH : H.Normal) {a b : G} :
                                          a * b H b * a H
                                          theorem AddSubgroup.Normal.mem_comm_iff {G : Type u_1} [AddGroup G] {H : AddSubgroup G} (nH : H.Normal) {a b : G} :
                                          a + b H b + a H
                                          def Subgroup.normalizer {G : Type u_1} [Group G] (H : Subgroup G) :

                                          The normalizer of H is the largest subgroup of G inside which H is normal.

                                          Equations
                                          • H.normalizer = { carrier := {g : G | ∀ (n : G), n H g * n * g⁻¹ H}, mul_mem' := , one_mem' := , inv_mem' := }
                                          Instances For

                                            The normalizer of H is the largest subgroup of G inside which H is normal.

                                            Equations
                                            • H.normalizer = { carrier := {g : G | ∀ (n : G), n H g + n + -g H}, add_mem' := , zero_mem' := , neg_mem' := }
                                            Instances For
                                              def Subgroup.setNormalizer {G : Type u_1} [Group G] (S : Set G) :

                                              The setNormalizer of S is the subgroup of G whose elements satisfy g*S*g⁻¹=S

                                              Equations
                                              Instances For

                                                The setNormalizer of S is the subgroup of G whose elements satisfy g+S-g=S.

                                                Equations
                                                Instances For
                                                  theorem Subgroup.mem_normalizer_iff {G : Type u_1} [Group G] {H : Subgroup G} {g : G} :
                                                  g H.normalizer ∀ (h : G), h H g * h * g⁻¹ H
                                                  theorem AddSubgroup.mem_normalizer_iff {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {g : G} :
                                                  g H.normalizer ∀ (h : G), h H g + h + -g H
                                                  theorem Subgroup.mem_normalizer_iff'' {G : Type u_1} [Group G] {H : Subgroup G} {g : G} :
                                                  g H.normalizer ∀ (h : G), h H g⁻¹ * h * g H
                                                  theorem AddSubgroup.mem_normalizer_iff'' {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {g : G} :
                                                  g H.normalizer ∀ (h : G), h H -g + h + g H
                                                  theorem Subgroup.mem_normalizer_iff' {G : Type u_1} [Group G] {H : Subgroup G} {g : G} :
                                                  g H.normalizer ∀ (n : G), n * g H g * n H
                                                  theorem AddSubgroup.mem_normalizer_iff' {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {g : G} :
                                                  g H.normalizer ∀ (n : G), n + g H g + n H
                                                  theorem Subgroup.le_normalizer {G : Type u_1} [Group G] {H : Subgroup G} :
                                                  H H.normalizer
                                                  theorem AddSubgroup.le_normalizer {G : Type u_1} [AddGroup G] {H : AddSubgroup G} :
                                                  H H.normalizer
                                                  class Subgroup.IsCommutative {G : Type u_1} [Group G] (H : Subgroup G) :

                                                  Commutativity of a subgroup

                                                  Instances

                                                    Commutativity of an additive subgroup

                                                    Instances
                                                      instance Subgroup.IsCommutative.commGroup {G : Type u_1} [Group G] (H : Subgroup G) [h : H.IsCommutative] :

                                                      A commutative subgroup is commutative.

                                                      Equations
                                                      instance AddSubgroup.IsCommutative.addCommGroup {G : Type u_1} [AddGroup G] (H : AddSubgroup G) [h : H.IsCommutative] :

                                                      A commutative subgroup is commutative.

                                                      Equations
                                                      theorem Subgroup.commGroup_isCommutative {G : Type u_3} [CommGroup G] (H : Subgroup G) :
                                                      H.IsCommutative

                                                      A subgroup of a commutative group is commutative.

                                                      theorem AddSubgroup.addCommGroup_isCommutative {G : Type u_3} [AddCommGroup G] (H : AddSubgroup G) :
                                                      H.IsCommutative

                                                      A subgroup of a commutative group is commutative.

                                                      theorem Subgroup.mul_comm_of_mem_isCommutative {G : Type u_1} [Group G] (H : Subgroup G) [H.IsCommutative] {a b : G} (ha : a H) (hb : b H) :
                                                      a * b = b * a
                                                      theorem AddSubgroup.add_comm_of_mem_isCommutative {G : Type u_1} [AddGroup G] (H : AddSubgroup G) [H.IsCommutative] {a b : G} (ha : a H) (hb : b H) :
                                                      a + b = b + a