Group with zero structure on the order type synonyms #
Transfer algebraic instances from α
to αᵒᵈ
and Lex α
.
Order dual #
Equations
- instMulZeroClassOrderDual = h
Equations
- instMulZeroOneClassOrderDual = h
Equations
- instSemigroupWithZeroOrderDual = h
Equations
- instMonoidWithZeroOrderDual = h
Equations
- instCancelMonoidWithZeroOrderDual = h
Equations
- instCommMonoidWithZeroOrderDual = h
Equations
- instCancelCommMonoidWithZeroOrderDual = h
Equations
- instGroupWithZeroOrderDual = h
Equations
- instCommGroupWithZeroOrderDual = h
Lexicographic order #
Equations
- instMulZeroClassLex = h
Equations
- instMulZeroOneClassLex = h
theorem
instNoZeroDivisorsLex
{α : Type u_1}
[Mul α]
[Zero α]
[h : NoZeroDivisors α]
:
NoZeroDivisors (Lex α)
instance
instSemigroupWithZeroLex
{α : Type u_1}
[h : SemigroupWithZero α]
:
SemigroupWithZero (Lex α)
Equations
- instSemigroupWithZeroLex = h
Equations
- instMonoidWithZeroLex = h
Equations
- instCancelMonoidWithZeroLex = h
Equations
- instCommMonoidWithZeroLex = h
Equations
- instCancelCommMonoidWithZeroLex = h
Equations
- instGroupWithZeroLex = h
instance
instCommGroupWithZeroLex
{α : Type u_1}
[h : CommGroupWithZero α]
:
CommGroupWithZero (Lex α)
Equations
- instCommGroupWithZeroLex = h