Documentation

Mathlib.Data.Countable.Basic

Countable types #

In this file we provide basic instances of the Countable typeclass defined elsewhere.

Definition in terms of Function.Embedding #

theorem Function.Embedding.countable {α : Sort u} {β : Sort v} [Countable β] (f : α β) :
theorem Function.Embedding.uncountable {α : Sort u} {β : Sort v} [Uncountable α] (f : α β) :

Operations on Type*s #

theorem instCountableSum {α : Type u} {β : Type v} [Countable α] [Countable β] :
Countable (α β)
theorem Sum.uncountable_inl {α : Type u} {β : Type v} [Uncountable α] :
theorem Sum.uncountable_inr {α : Type u} {β : Type v} [Uncountable β] :
theorem instCountableProd {α : Type u} {β : Type v} [Countable α] [Countable β] :
Countable (α × β)
theorem instUncountableProdOfNonempty {α : Type u} {β : Type v} [Uncountable α] [Nonempty β] :
Uncountable (α × β)
theorem countable_left_of_prod_of_nonempty {α : Type u} {β : Type v} [Nonempty β] (h : Countable (α × β)) :
theorem countable_right_of_prod_of_nonempty {α : Type u} {β : Type v} [Nonempty α] (h : Countable (α × β)) :
theorem countable_prod_swap {α : Type u} {β : Type v} [Countable (α × β)] :
Countable (β × α)
theorem instCountableSigma {α : Type u} {π : αType w} [Countable α] [∀ (a : α), Countable (π a)] :
theorem Sigma.uncountable {α : Type u} {π : αType w} (a : α) [Uncountable (π a)] :
theorem instUncountableSigmaOfNonempty {α : Type u} {π : αType w} [Nonempty α] [∀ (a : α), Uncountable (π a)] :
theorem SetCoe.countable {α : Type u} [Countable α] (s : Set α) :

Operations on Sort*s #

theorem instCountablePSum {α : Sort u} {β : Sort v} [Countable α] [Countable β] :
Countable (α ⊕' β)
theorem instCountablePProd {α : Sort u} {β : Sort v} [Countable α] [Countable β] :
Countable (α ×' β)
theorem instCountablePSigma {α : Sort u} {π : αSort w} [Countable α] [∀ (a : α), Countable (π a)] :
theorem instCountableForallOfFinite {α : Sort u} {π : αSort w} [Finite α] [∀ (a : α), Countable (π a)] :
Countable ((a : α) → π a)