Monotone functions on bounded orders #
Top, bottom element #
theorem
StrictMono.apply_eq_top_iff
{α : Type u}
{β : Type v}
[PartialOrder α]
[OrderTop α]
[Preorder β]
{f : α → β}
{a : α}
(hf : StrictMono f)
:
theorem
StrictAnti.apply_eq_top_iff
{α : Type u}
{β : Type v}
[PartialOrder α]
[OrderTop α]
[Preorder β]
{f : α → β}
{a : α}
(hf : StrictAnti f)
:
theorem
StrictMono.maximal_preimage_top
{α : Type u}
{β : Type v}
[LinearOrder α]
[Preorder β]
[OrderTop β]
{f : α → β}
(H : StrictMono f)
{a : α}
(h_top : f a = ⊤)
(x : α)
:
x ≤ a
theorem
StrictMono.apply_eq_bot_iff
{α : Type u}
{β : Type v}
[PartialOrder α]
[OrderBot α]
[Preorder β]
{f : α → β}
{a : α}
(hf : StrictMono f)
:
theorem
StrictAnti.apply_eq_bot_iff
{α : Type u}
{β : Type v}
[PartialOrder α]
[OrderBot α]
[Preorder β]
{f : α → β}
{a : α}
(hf : StrictAnti f)
:
theorem
StrictMono.minimal_preimage_bot
{α : Type u}
{β : Type v}
[LinearOrder α]
[PartialOrder β]
[OrderBot β]
{f : α → β}
(H : StrictMono f)
{a : α}
(h_bot : f a = ⊥)
(x : α)
:
a ≤ x