Documentation

Mathlib.Order.Interval.Set.Infinite

Infinitude of intervals #

Bounded intervals in dense orders are infinite, as are unbounded intervals in orders that are unbounded on the appropriate side. We also prove that an unbounded preorder is an infinite type.

theorem NoMaxOrder.infinite {α : Type u_1} [Preorder α] [Nonempty α] [NoMaxOrder α] :

A nonempty preorder with no maximal element is infinite.

theorem NoMinOrder.infinite {α : Type u_1} [Preorder α] [Nonempty α] [NoMinOrder α] :

A nonempty preorder with no minimal element is infinite.

theorem Set.Ioo.infinite {α : Type u_1} [Preorder α] [DenselyOrdered α] {a b : α} (h : a < b) :
Infinite (Set.Ioo a b)
theorem Set.Ioo_infinite {α : Type u_1} [Preorder α] [DenselyOrdered α] {a b : α} (h : a < b) :
(Set.Ioo a b).Infinite
theorem Set.Ico_infinite {α : Type u_1} [Preorder α] [DenselyOrdered α] {a b : α} (h : a < b) :
(Set.Ico a b).Infinite
theorem Set.Ico.infinite {α : Type u_1} [Preorder α] [DenselyOrdered α] {a b : α} (h : a < b) :
Infinite (Set.Ico a b)
theorem Set.Ioc_infinite {α : Type u_1} [Preorder α] [DenselyOrdered α] {a b : α} (h : a < b) :
(Set.Ioc a b).Infinite
theorem Set.Ioc.infinite {α : Type u_1} [Preorder α] [DenselyOrdered α] {a b : α} (h : a < b) :
Infinite (Set.Ioc a b)
theorem Set.Icc_infinite {α : Type u_1} [Preorder α] [DenselyOrdered α] {a b : α} (h : a < b) :
(Set.Icc a b).Infinite
theorem Set.Icc.infinite {α : Type u_1} [Preorder α] [DenselyOrdered α] {a b : α} (h : a < b) :
Infinite (Set.Icc a b)
theorem Set.Iio_infinite {α : Type u_1} [Preorder α] [NoMinOrder α] (a : α) :
(Set.Iio a).Infinite
theorem Set.Iic_infinite {α : Type u_1} [Preorder α] [NoMinOrder α] (a : α) :
(Set.Iic a).Infinite
theorem Set.Ioi_infinite {α : Type u_1} [Preorder α] [NoMaxOrder α] (a : α) :
(Set.Ioi a).Infinite
theorem Set.Ici_infinite {α : Type u_1} [Preorder α] [NoMaxOrder α] (a : α) :
(Set.Ici a).Infinite