Documentation

Mathlib.Order.RelClasses

Unbundled relation classes #

In this file we prove some properties of Is* classes defined in Order.Defs. The main difference between these classes and the usual order classes (Preorder etc) is that usual classes extend LE and/or LT while these classes take a relation as an explicit argument.

theorem of_eq {α : Type u} {r : ααProp} [IsRefl α r] {a b : α} :
a = br a b
theorem comm {α : Type u} {r : ααProp} [IsSymm α r] {a b : α} :
r a b r b a
theorem antisymm' {α : Type u} {r : ααProp} [IsAntisymm α r] {a b : α} :
r a br b ab = a
theorem antisymm_iff {α : Type u} {r : ααProp} [IsRefl α r] [IsAntisymm α r] {a b : α} :
r a b r b a a = b
@[elab_without_expected_type]
theorem antisymm_of {α : Type u} (r : ααProp) [IsAntisymm α r] {a b : α} :
r a br b aa = b

A version of antisymm with r explicit.

This lemma matches the lemmas from lean core in Init.Algebra.Classes, but is missing there.

@[elab_without_expected_type]
theorem antisymm_of' {α : Type u} (r : ααProp) [IsAntisymm α r] {a b : α} :
r a br b ab = a

A version of antisymm' with r explicit.

This lemma matches the lemmas from lean core in Init.Algebra.Classes, but is missing there.

theorem comm_of {α : Type u} (r : ααProp) [IsSymm α r] {a b : α} :
r a b r b a

A version of comm with r explicit.

This lemma matches the lemmas from lean core in Init.Algebra.Classes, but is missing there.

theorem IsRefl.swap {α : Type u} (r : ααProp) [IsRefl α r] :
theorem IsIrrefl.swap {α : Type u} (r : ααProp) [IsIrrefl α r] :
theorem IsTrans.swap {α : Type u} (r : ααProp) [IsTrans α r] :
theorem IsAntisymm.swap {α : Type u} (r : ααProp) [IsAntisymm α r] :
theorem IsAsymm.swap {α : Type u} (r : ααProp) [IsAsymm α r] :
theorem IsTotal.swap {α : Type u} (r : ααProp) [IsTotal α r] :
theorem IsTrichotomous.swap {α : Type u} (r : ααProp) [IsTrichotomous α r] :
theorem IsPreorder.swap {α : Type u} (r : ααProp) [IsPreorder α r] :
theorem IsStrictOrder.swap {α : Type u} (r : ααProp) [IsStrictOrder α r] :
theorem IsPartialOrder.swap {α : Type u} (r : ααProp) [IsPartialOrder α r] :
@[deprecated]
theorem IsLinearOrder.swap {α : Type u} (r : ααProp) [IsLinearOrder α r] :
theorem IsAsymm.isAntisymm {α : Type u} (r : ααProp) [IsAsymm α r] :
theorem IsAsymm.isIrrefl {α : Type u} {r : ααProp} [IsAsymm α r] :
theorem IsTotal.isTrichotomous {α : Type u} (r : ααProp) [IsTotal α r] :
theorem IsTotal.to_isRefl {α : Type u} (r : ααProp) [IsTotal α r] :
IsRefl α r
theorem ne_of_irrefl {α : Type u} {r : ααProp} [IsIrrefl α r] {x y : α} :
r x yx y
theorem ne_of_irrefl' {α : Type u} {r : ααProp} [IsIrrefl α r] {x y : α} :
r x yy x
theorem not_rel_of_subsingleton {α : Type u} (r : ααProp) [IsIrrefl α r] [Subsingleton α] (x y : α) :
¬r x y
theorem rel_of_subsingleton {α : Type u} (r : ααProp) [IsRefl α r] [Subsingleton α] (x y : α) :
r x y
@[simp]
theorem empty_relation_apply {α : Type u} (a b : α) :
theorem eq_empty_relation {α : Type u} (r : ααProp) [IsIrrefl α r] [Subsingleton α] :
r = EmptyRelation
theorem instIsIrreflEmptyRelation {α : Type u} :
IsIrrefl α EmptyRelation
theorem trans_trichotomous_left {α : Type u} {r : ααProp} [IsTrans α r] [IsTrichotomous α r] {a b c : α} (h₁ : ¬r b a) (h₂ : r b c) :
r a c
theorem trans_trichotomous_right {α : Type u} {r : ααProp} [IsTrans α r] [IsTrichotomous α r] {a b c : α} (h₁ : r a b) (h₂ : ¬r c b) :
r a c
theorem transitive_of_trans {α : Type u} (r : ααProp) [IsTrans α r] :
theorem extensional_of_trichotomous_of_irrefl {α : Type u} (r : ααProp) [IsTrichotomous α r] [IsIrrefl α r] {a b : α} (H : ∀ (x : α), r x a r x b) :
a = b

In a trichotomous irreflexive order, every element is determined by the set of predecessors.

@[reducible, inline]
abbrev partialOrderOfSO {α : Type u} (r : ααProp) [IsStrictOrder α r] :

Construct a partial order from an isStrictOrder relation.

See note [reducible non-instances].

Equations
Instances For
    @[reducible, inline]
    abbrev linearOrderOfSTO {α : Type u} (r : ααProp) [IsStrictTotalOrder α r] [DecidableRel r] :

    Construct a linear order from an IsStrictTotalOrder relation.

    See note [reducible non-instances].

    Equations
    Instances For

      Order connection #

      class IsOrderConnected (α : Type u) (lt : ααProp) :

      A connected order is one satisfying the condition a < c → a < b ∨ b < c. This is recognizable as an intuitionistic substitute for a ≤ b ∨ b ≤ a on the constructive reals, and is also known as negative transitivity, since the contrapositive asserts transitivity of the relation ¬ a < b.

      • conn : ∀ (a b c : α), lt a clt a b lt b c

        A connected order is one satisfying the condition a < c → a < b ∨ b < c.

      Instances
        theorem IsOrderConnected.neg_trans {α : Type u} {r : ααProp} [IsOrderConnected α r] {a b c : α} (h₁ : ¬r a b) (h₂ : ¬r b c) :
        ¬r a c
        theorem isStrictWeakOrder_of_isOrderConnected {α : Type u} {r : ααProp} [IsAsymm α r] [IsOrderConnected α r] :
        @[deprecated]

        Well-order #

        class IsWellFounded (α : Type u) (r : ααProp) :

        A well-founded relation. Not to be confused with IsWellOrder.

        Instances
          theorem isWellFounded_iff (α : Type u) (r : ααProp) :
          theorem WellFoundedRelation.isWellFounded {α : Type u} [h : WellFoundedRelation α] :
          IsWellFounded α WellFoundedRelation.rel
          theorem WellFounded.prod_lex {α : Type u} {β : Type v} {ra : ααProp} {rb : ββProp} (ha : WellFounded ra) (hb : WellFounded rb) :
          theorem WellFounded.psigma_lex {α : Sort u_1} {β : αSort u_2} {r : ααProp} {s : (a : α) → β aβ aProp} (ha : WellFounded r) (hb : ∀ (x : α), WellFounded (s x)) :

          The lexicographical order of well-founded relations is well-founded.

          theorem WellFounded.psigma_revLex {α : Sort u_1} {β : Sort u_2} {r : ααProp} {s : ββProp} (ha : WellFounded r) (hb : WellFounded s) :
          theorem WellFounded.psigma_skipLeft (α : Type u) {β : Type v} {s : ββProp} (hb : WellFounded s) :
          @[deprecated WellFounded.psigma_lex]
          theorem PSigma.lex_wf {α : Sort u_1} {β : αSort u_2} {r : ααProp} {s : (a : α) → β aβ aProp} (ha : WellFounded r) (hb : ∀ (x : α), WellFounded (s x)) :

          Alias of WellFounded.psigma_lex.


          The lexicographical order of well-founded relations is well-founded.

          @[deprecated WellFounded.psigma_revLex]
          theorem PSigma.revLex_wf {α : Sort u_1} {β : Sort u_2} {r : ααProp} {s : ββProp} (ha : WellFounded r) (hb : WellFounded s) :

          Alias of WellFounded.psigma_revLex.

          @[deprecated WellFounded.psigma_skipLeft]
          theorem PSigma.skipLeft_wf (α : Type u) {β : Type v} {s : ββProp} (hb : WellFounded s) :

          Alias of WellFounded.psigma_skipLeft.

          theorem IsWellFounded.induction {α : Type u} (r : ααProp) [IsWellFounded α r] {C : αProp} (a : α) (ind : ∀ (x : α), (∀ (y : α), r y xC y)C x) :
          C a

          Induction on a well-founded relation.

          theorem IsWellFounded.apply {α : Type u} (r : ααProp) [IsWellFounded α r] (a : α) :
          Acc r a

          All values are accessible under the well-founded relation.

          def IsWellFounded.fix {α : Type u} (r : ααProp) [IsWellFounded α r] {C : αSort u_1} :
          ((x : α) → ((y : α) → r y xC y)C x)(x : α) → C x

          Creates data, given a way to generate a value from all that compare as less under a well-founded relation. See also IsWellFounded.fix_eq.

          Equations
          Instances For
            theorem IsWellFounded.fix_eq {α : Type u} (r : ααProp) [IsWellFounded α r] {C : αSort u_1} (F : (x : α) → ((y : α) → r y xC y)C x) (x : α) :
            IsWellFounded.fix r F x = F x fun (y : α) (x : r y x) => IsWellFounded.fix r F y

            The value from IsWellFounded.fix is built from the previous ones as specified.

            Derive a WellFoundedRelation instance from an isWellFounded instance.

            Equations
            Instances For
              theorem WellFounded.asymmetric {α : Sort u_1} {r : ααProp} (h : WellFounded r) (a b : α) :
              r a b¬r b a
              theorem instIsAsymmOfIsWellFounded {α : Type u} (r : ααProp) [IsWellFounded α r] :
              IsAsymm α r
              theorem instIsIrreflOfIsWellFounded {α : Type u} (r : ααProp) [IsWellFounded α r] :
              theorem instIsWellFoundedTransGen {α : Type u} (r : ααProp) [i : IsWellFounded α r] :
              @[reducible, inline]
              abbrev WellFoundedLT (α : Type u_1) [LT α] :

              A class for a well founded relation <.

              Equations
              Instances For
                @[reducible, inline]
                abbrev WellFoundedGT (α : Type u_1) [LT α] :

                A class for a well founded relation >.

                Equations
                Instances For
                  theorem wellFounded_lt {α : Type u} [LT α] [WellFoundedLT α] :
                  WellFounded fun (x1 x2 : α) => x1 < x2
                  theorem wellFounded_gt {α : Type u} [LT α] [WellFoundedGT α] :
                  WellFounded fun (x1 x2 : α) => x1 > x2
                  class IsWellOrder (α : Type u) (r : ααProp) extends IsTrichotomous α r, IsTrans α r, IsWellFounded α r :

                  A well order is a well-founded linear order.

                  Instances
                    theorem instIsStrictTotalOrderOfIsWellOrder {α : Type u_1} (r : ααProp) [IsWellOrder α r] :
                    theorem instIsTrichotomousOfIsWellOrder {α : Type u_1} (r : ααProp) [IsWellOrder α r] :
                    theorem instIsTransOfIsWellOrder {α : Type u_1} (r : ααProp) [IsWellOrder α r] :
                    IsTrans α r
                    theorem instIsIrreflOfIsWellOrder {α : Type u_1} (r : ααProp) [IsWellOrder α r] :
                    theorem instIsAsymmOfIsWellOrder {α : Type u_1} (r : ααProp) [IsWellOrder α r] :
                    IsAsymm α r
                    theorem WellFoundedLT.induction {α : Type u} [LT α] [WellFoundedLT α] {C : αProp} (a : α) (ind : ∀ (x : α), (∀ (y : α), y < xC y)C x) :
                    C a

                    Inducts on a well-founded < relation.

                    theorem WellFoundedLT.apply {α : Type u} [LT α] [WellFoundedLT α] (a : α) :
                    Acc (fun (x1 x2 : α) => x1 < x2) a

                    All values are accessible under the well-founded <.

                    def WellFoundedLT.fix {α : Type u} [LT α] [WellFoundedLT α] {C : αSort u_1} :
                    ((x : α) → ((y : α) → y < xC y)C x)(x : α) → C x

                    Creates data, given a way to generate a value from all that compare as lesser. See also WellFoundedLT.fix_eq.

                    Equations
                    Instances For
                      theorem WellFoundedLT.fix_eq {α : Type u} [LT α] [WellFoundedLT α] {C : αSort u_1} (F : (x : α) → ((y : α) → y < xC y)C x) (x : α) :
                      WellFoundedLT.fix F x = F x fun (y : α) (x : y < x) => WellFoundedLT.fix F y

                      The value from WellFoundedLT.fix is built from the previous ones as specified.

                      Derive a WellFoundedRelation instance from a WellFoundedLT instance.

                      Equations
                      Instances For
                        theorem WellFoundedGT.induction {α : Type u} [LT α] [WellFoundedGT α] {C : αProp} (a : α) (ind : ∀ (x : α), (∀ (y : α), x < yC y)C x) :
                        C a

                        Inducts on a well-founded > relation.

                        theorem WellFoundedGT.apply {α : Type u} [LT α] [WellFoundedGT α] (a : α) :
                        Acc (fun (x1 x2 : α) => x1 > x2) a

                        All values are accessible under the well-founded >.

                        def WellFoundedGT.fix {α : Type u} [LT α] [WellFoundedGT α] {C : αSort u_1} :
                        ((x : α) → ((y : α) → x < yC y)C x)(x : α) → C x

                        Creates data, given a way to generate a value from all that compare as greater. See also WellFoundedGT.fix_eq.

                        Equations
                        Instances For
                          theorem WellFoundedGT.fix_eq {α : Type u} [LT α] [WellFoundedGT α] {C : αSort u_1} (F : (x : α) → ((y : α) → x < yC y)C x) (x : α) :
                          WellFoundedGT.fix F x = F x fun (y : α) (x : x < y) => WellFoundedGT.fix F y

                          The value from WellFoundedGT.fix is built from the successive ones as specified.

                          Derive a WellFoundedRelation instance from a WellFoundedGT instance.

                          Equations
                          Instances For
                            noncomputable def IsWellOrder.linearOrder {α : Type u} (r : ααProp) [IsWellOrder α r] :

                            Construct a decidable linear order from a well-founded linear order.

                            Equations
                            Instances For
                              def IsWellOrder.toHasWellFounded {α : Type u} [LT α] [hwo : IsWellOrder α fun (x1 x2 : α) => x1 < x2] :

                              Derive a WellFoundedRelation instance from an IsWellOrder instance.

                              Equations
                              • IsWellOrder.toHasWellFounded = { rel := fun (x1 x2 : α) => x1 < x2, wf := }
                              Instances For
                                theorem Subsingleton.isWellOrder {α : Type u} [Subsingleton α] (r : ααProp) [hr : IsIrrefl α r] :
                                theorem instIsWellOrderOfIsEmpty {α : Type u} [IsEmpty α] (r : ααProp) :
                                theorem instIsWellFoundedProdLex {α : Type u} {β : Type v} {r : ααProp} {s : ββProp} [IsWellFounded α r] [IsWellFounded β s] :
                                IsWellFounded (α × β) (Prod.Lex r s)
                                theorem instIsWellOrderProdLex {α : Type u} {β : Type v} {r : ααProp} {s : ββProp} [IsWellOrder α r] [IsWellOrder β s] :
                                IsWellOrder (α × β) (Prod.Lex r s)
                                theorem instIsWellFoundedInvImage {α : Type u} {β : Type v} (r : ααProp) [IsWellFounded α r] (f : βα) :
                                theorem instIsWellFoundedInvImageNatLt {α : Type u} (f : α) :
                                IsWellFounded α (InvImage (fun (x1 x2 : ) => x1 < x2) f)
                                theorem Subrelation.isWellFounded {α : Type u} (r : ααProp) [IsWellFounded α r] {s : ααProp} (h : Subrelation s r) :
                                theorem Prod.wellFoundedLT' {α : Type u} {β : Type v} [PartialOrder α] [WellFoundedLT α] [Preorder β] [WellFoundedLT β] :

                                See Prod.wellFoundedLT for a version that only requires Preorder α.

                                theorem Prod.wellFoundedGT' {α : Type u} {β : Type v} [PartialOrder α] [WellFoundedGT α] [Preorder β] [WellFoundedGT β] :

                                See Prod.wellFoundedGT for a version that only requires Preorder α.

                                def Set.Unbounded {α : Type u} (r : ααProp) (s : Set α) :

                                An unbounded or cofinal set.

                                Equations
                                Instances For
                                  def Set.Bounded {α : Type u} (r : ααProp) (s : Set α) :

                                  A bounded or final set. Not to be confused with Bornology.IsBounded.

                                  Equations
                                  Instances For
                                    @[simp]
                                    theorem Set.not_bounded_iff {α : Type u} {r : ααProp} (s : Set α) :
                                    @[simp]
                                    theorem Set.not_unbounded_iff {α : Type u} {r : ααProp} (s : Set α) :
                                    theorem Set.unbounded_of_isEmpty {α : Type u} [IsEmpty α] {r : ααProp} (s : Set α) :
                                    theorem Order.Preimage.instIsRefl {α : Type u} {β : Type v} {r : ααProp} [IsRefl α r] {f : βα} :
                                    IsRefl β (f ⁻¹'o r)
                                    theorem Order.Preimage.instIsTrans {α : Type u} {β : Type v} {r : ααProp} [IsTrans α r] {f : βα} :
                                    IsTrans β (f ⁻¹'o r)

                                    Strict-non strict relations #

                                    class IsNonstrictStrictOrder (α : Type u_1) (r : semiOutParam (ααProp)) (s : ααProp) :

                                    An unbundled relation class stating that r is the nonstrict relation corresponding to the strict relation s. Compare Preorder.lt_iff_le_not_le. This is mostly meant to provide dot notation on (⊆) and (⊂).

                                    • right_iff_left_not_left : ∀ (a b : α), s a b r a b ¬r b a

                                      The relation r is the nonstrict relation corresponding to the strict relation s.

                                    Instances
                                      theorem right_iff_left_not_left {α : Type u} {r s : ααProp} [IsNonstrictStrictOrder α r s] {a b : α} :
                                      s a b r a b ¬r b a
                                      theorem right_iff_left_not_left_of {α : Type u} (r s : ααProp) [IsNonstrictStrictOrder α r s] {a b : α} :
                                      s a b r a b ¬r b a

                                      A version of right_iff_left_not_left with explicit r and s.

                                      theorem instIsIrreflOfIsNonstrictStrictOrder {α : Type u} {r s : ααProp} [IsNonstrictStrictOrder α r s] :

                                      and #

                                      theorem subset_of_eq_of_subset {α : Type u} [HasSubset α] {a b c : α} (hab : a = b) (hbc : b c) :
                                      a c
                                      theorem subset_of_subset_of_eq {α : Type u} [HasSubset α] {a b c : α} (hab : a b) (hbc : b = c) :
                                      a c
                                      @[simp]
                                      theorem subset_refl {α : Type u} [HasSubset α] [IsRefl α fun (x1 x2 : α) => x1 x2] (a : α) :
                                      a a
                                      theorem subset_rfl {α : Type u} [HasSubset α] {a : α} [IsRefl α fun (x1 x2 : α) => x1 x2] :
                                      a a
                                      theorem subset_of_eq {α : Type u} [HasSubset α] {a b : α} [IsRefl α fun (x1 x2 : α) => x1 x2] :
                                      a = ba b
                                      theorem superset_of_eq {α : Type u} [HasSubset α] {a b : α} [IsRefl α fun (x1 x2 : α) => x1 x2] :
                                      a = bb a
                                      theorem ne_of_not_subset {α : Type u} [HasSubset α] {a b : α} [IsRefl α fun (x1 x2 : α) => x1 x2] :
                                      ¬a ba b
                                      theorem ne_of_not_superset {α : Type u} [HasSubset α] {a b : α} [IsRefl α fun (x1 x2 : α) => x1 x2] :
                                      ¬a bb a
                                      theorem subset_trans {α : Type u} [HasSubset α] [IsTrans α fun (x1 x2 : α) => x1 x2] {a b c : α} :
                                      a bb ca c
                                      theorem subset_antisymm {α : Type u} [HasSubset α] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] :
                                      a bb aa = b
                                      theorem superset_antisymm {α : Type u} [HasSubset α] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] :
                                      a bb ab = a
                                      theorem Eq.trans_subset {α : Type u} [HasSubset α] {a b c : α} (hab : a = b) (hbc : b c) :
                                      a c

                                      Alias of subset_of_eq_of_subset.

                                      theorem HasSubset.subset.trans_eq {α : Type u} [HasSubset α] {a b c : α} (hab : a b) (hbc : b = c) :
                                      a c

                                      Alias of subset_of_subset_of_eq.

                                      theorem Eq.subset' {α : Type u} [HasSubset α] {a b : α} [IsRefl α fun (x1 x2 : α) => x1 x2] :
                                      a = ba b

                                      Alias of subset_of_eq.

                                      theorem Eq.superset {α : Type u} [HasSubset α] {a b : α} [IsRefl α fun (x1 x2 : α) => x1 x2] :
                                      a = bb a

                                      Alias of superset_of_eq.

                                      theorem HasSubset.Subset.trans {α : Type u} [HasSubset α] [IsTrans α fun (x1 x2 : α) => x1 x2] {a b c : α} :
                                      a bb ca c

                                      Alias of subset_trans.

                                      theorem HasSubset.Subset.antisymm {α : Type u} [HasSubset α] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] :
                                      a bb aa = b

                                      Alias of subset_antisymm.

                                      theorem HasSubset.Subset.antisymm' {α : Type u} [HasSubset α] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] :
                                      a bb ab = a

                                      Alias of superset_antisymm.

                                      theorem subset_antisymm_iff {α : Type u} [HasSubset α] {a b : α} [IsRefl α fun (x1 x2 : α) => x1 x2] [IsAntisymm α fun (x1 x2 : α) => x1 x2] :
                                      a = b a b b a
                                      theorem superset_antisymm_iff {α : Type u} [HasSubset α] {a b : α} [IsRefl α fun (x1 x2 : α) => x1 x2] [IsAntisymm α fun (x1 x2 : α) => x1 x2] :
                                      a = b b a a b
                                      theorem ssubset_of_eq_of_ssubset {α : Type u} [HasSSubset α] {a b c : α} (hab : a = b) (hbc : b c) :
                                      a c
                                      theorem ssubset_of_ssubset_of_eq {α : Type u} [HasSSubset α] {a b c : α} (hab : a b) (hbc : b = c) :
                                      a c
                                      theorem ssubset_irrefl {α : Type u} [HasSSubset α] [IsIrrefl α fun (x1 x2 : α) => x1 x2] (a : α) :
                                      ¬a a
                                      theorem ssubset_irrfl {α : Type u} [HasSSubset α] [IsIrrefl α fun (x1 x2 : α) => x1 x2] {a : α} :
                                      ¬a a
                                      theorem ne_of_ssubset {α : Type u} [HasSSubset α] [IsIrrefl α fun (x1 x2 : α) => x1 x2] {a b : α} :
                                      a ba b
                                      theorem ne_of_ssuperset {α : Type u} [HasSSubset α] [IsIrrefl α fun (x1 x2 : α) => x1 x2] {a b : α} :
                                      a bb a
                                      theorem ssubset_trans {α : Type u} [HasSSubset α] [IsTrans α fun (x1 x2 : α) => x1 x2] {a b c : α} :
                                      a bb ca c
                                      theorem ssubset_asymm {α : Type u} [HasSSubset α] [IsAsymm α fun (x1 x2 : α) => x1 x2] {a b : α} :
                                      a b¬b a
                                      theorem Eq.trans_ssubset {α : Type u} [HasSSubset α] {a b c : α} (hab : a = b) (hbc : b c) :
                                      a c

                                      Alias of ssubset_of_eq_of_ssubset.

                                      theorem HasSSubset.SSubset.trans_eq {α : Type u} [HasSSubset α] {a b c : α} (hab : a b) (hbc : b = c) :
                                      a c

                                      Alias of ssubset_of_ssubset_of_eq.

                                      theorem HasSSubset.SSubset.false {α : Type u} [HasSSubset α] [IsIrrefl α fun (x1 x2 : α) => x1 x2] {a : α} :
                                      ¬a a

                                      Alias of ssubset_irrfl.

                                      theorem HasSSubset.SSubset.ne {α : Type u} [HasSSubset α] [IsIrrefl α fun (x1 x2 : α) => x1 x2] {a b : α} :
                                      a ba b

                                      Alias of ne_of_ssubset.

                                      theorem HasSSubset.SSubset.ne' {α : Type u} [HasSSubset α] [IsIrrefl α fun (x1 x2 : α) => x1 x2] {a b : α} :
                                      a bb a

                                      Alias of ne_of_ssuperset.

                                      theorem HasSSubset.SSubset.trans {α : Type u} [HasSSubset α] [IsTrans α fun (x1 x2 : α) => x1 x2] {a b c : α} :
                                      a bb ca c

                                      Alias of ssubset_trans.

                                      theorem HasSSubset.SSubset.asymm {α : Type u} [HasSSubset α] [IsAsymm α fun (x1 x2 : α) => x1 x2] {a b : α} :
                                      a b¬b a

                                      Alias of ssubset_asymm.

                                      theorem ssubset_iff_subset_not_subset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} :
                                      a b a b ¬b a
                                      theorem subset_of_ssubset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} (h : a b) :
                                      a b
                                      theorem not_subset_of_ssubset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} (h : a b) :
                                      ¬b a
                                      theorem not_ssubset_of_subset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} (h : a b) :
                                      ¬b a
                                      theorem ssubset_of_subset_not_subset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} (h₁ : a b) (h₂ : ¬b a) :
                                      a b
                                      theorem HasSSubset.SSubset.subset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} (h : a b) :
                                      a b

                                      Alias of subset_of_ssubset.

                                      theorem HasSSubset.SSubset.not_subset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} (h : a b) :
                                      ¬b a

                                      Alias of not_subset_of_ssubset.

                                      theorem HasSubset.Subset.not_ssubset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} (h : a b) :
                                      ¬b a

                                      Alias of not_ssubset_of_subset.

                                      theorem HasSubset.Subset.ssubset_of_not_subset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} (h₁ : a b) (h₂ : ¬b a) :
                                      a b

                                      Alias of ssubset_of_subset_not_subset.

                                      theorem ssubset_of_subset_of_ssubset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b c : α} [IsTrans α fun (x1 x2 : α) => x1 x2] (h₁ : a b) (h₂ : b c) :
                                      a c
                                      theorem ssubset_of_ssubset_of_subset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b c : α} [IsTrans α fun (x1 x2 : α) => x1 x2] (h₁ : a b) (h₂ : b c) :
                                      a c
                                      theorem ssubset_of_subset_of_ne {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] (h₁ : a b) (h₂ : a b) :
                                      a b
                                      theorem ssubset_of_ne_of_subset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] (h₁ : a b) (h₂ : a b) :
                                      a b
                                      theorem eq_or_ssubset_of_subset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] (h : a b) :
                                      a = b a b
                                      theorem ssubset_or_eq_of_subset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] (h : a b) :
                                      a b a = b
                                      theorem eq_of_subset_of_not_ssubset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] (hab : a b) (hba : ¬a b) :
                                      a = b
                                      theorem eq_of_superset_of_not_ssuperset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] (hab : a b) (hba : ¬a b) :
                                      b = a
                                      theorem HasSubset.Subset.trans_ssubset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b c : α} [IsTrans α fun (x1 x2 : α) => x1 x2] (h₁ : a b) (h₂ : b c) :
                                      a c

                                      Alias of ssubset_of_subset_of_ssubset.

                                      theorem HasSSubset.SSubset.trans_subset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b c : α} [IsTrans α fun (x1 x2 : α) => x1 x2] (h₁ : a b) (h₂ : b c) :
                                      a c

                                      Alias of ssubset_of_ssubset_of_subset.

                                      theorem HasSubset.Subset.ssubset_of_ne {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] (h₁ : a b) (h₂ : a b) :
                                      a b

                                      Alias of ssubset_of_subset_of_ne.

                                      theorem Ne.ssubset_of_subset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] (h₁ : a b) (h₂ : a b) :
                                      a b

                                      Alias of ssubset_of_ne_of_subset.

                                      theorem HasSubset.Subset.eq_or_ssubset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] (h : a b) :
                                      a = b a b

                                      Alias of eq_or_ssubset_of_subset.

                                      theorem HasSubset.Subset.ssubset_or_eq {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] (h : a b) :
                                      a b a = b

                                      Alias of ssubset_or_eq_of_subset.

                                      theorem HasSubset.Subset.eq_of_not_ssubset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] (hab : a b) (hba : ¬a b) :
                                      a = b

                                      Alias of eq_of_subset_of_not_ssubset.

                                      theorem HasSubset.Subset.eq_of_not_ssuperset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] (hab : a b) (hba : ¬a b) :
                                      b = a

                                      Alias of eq_of_superset_of_not_ssuperset.

                                      theorem ssubset_iff_subset_ne {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] :
                                      a b a b a b
                                      theorem subset_iff_ssubset_or_eq {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsRefl α fun (x1 x2 : α) => x1 x2] [IsAntisymm α fun (x1 x2 : α) => x1 x2] :
                                      a b a b a = b

                                      Conversion of bundled order typeclasses to unbundled relation typeclasses #

                                      theorem instIsReflLe {α : Type u} [Preorder α] :
                                      IsRefl α fun (x1 x2 : α) => x1 x2
                                      theorem instIsReflGe {α : Type u} [Preorder α] :
                                      IsRefl α fun (x1 x2 : α) => x1 x2
                                      theorem instIsTransLe {α : Type u} [Preorder α] :
                                      IsTrans α fun (x1 x2 : α) => x1 x2
                                      theorem instIsTransGe {α : Type u} [Preorder α] :
                                      IsTrans α fun (x1 x2 : α) => x1 x2
                                      theorem instIsPreorderLe {α : Type u} [Preorder α] :
                                      IsPreorder α fun (x1 x2 : α) => x1 x2
                                      theorem instIsPreorderGe {α : Type u} [Preorder α] :
                                      IsPreorder α fun (x1 x2 : α) => x1 x2
                                      theorem instIsIrreflLt {α : Type u} [Preorder α] :
                                      IsIrrefl α fun (x1 x2 : α) => x1 < x2
                                      theorem instIsIrreflGt {α : Type u} [Preorder α] :
                                      IsIrrefl α fun (x1 x2 : α) => x1 > x2
                                      theorem instIsTransLt {α : Type u} [Preorder α] :
                                      IsTrans α fun (x1 x2 : α) => x1 < x2
                                      theorem instIsTransGt {α : Type u} [Preorder α] :
                                      IsTrans α fun (x1 x2 : α) => x1 > x2
                                      theorem instIsAsymmLt {α : Type u} [Preorder α] :
                                      IsAsymm α fun (x1 x2 : α) => x1 < x2
                                      theorem instIsAsymmGt {α : Type u} [Preorder α] :
                                      IsAsymm α fun (x1 x2 : α) => x1 > x2
                                      theorem instIsAntisymmLt {α : Type u} [Preorder α] :
                                      IsAntisymm α fun (x1 x2 : α) => x1 < x2
                                      theorem instIsAntisymmGt {α : Type u} [Preorder α] :
                                      IsAntisymm α fun (x1 x2 : α) => x1 > x2
                                      theorem instIsStrictOrderLt {α : Type u} [Preorder α] :
                                      IsStrictOrder α fun (x1 x2 : α) => x1 < x2
                                      theorem instIsStrictOrderGt {α : Type u} [Preorder α] :
                                      IsStrictOrder α fun (x1 x2 : α) => x1 > x2
                                      theorem instIsNonstrictStrictOrderLeLt {α : Type u} [Preorder α] :
                                      IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 < x2
                                      theorem instIsAntisymmLe {α : Type u} [PartialOrder α] :
                                      IsAntisymm α fun (x1 x2 : α) => x1 x2
                                      theorem instIsAntisymmGe {α : Type u} [PartialOrder α] :
                                      IsAntisymm α fun (x1 x2 : α) => x1 x2
                                      theorem instIsPartialOrderLe {α : Type u} [PartialOrder α] :
                                      IsPartialOrder α fun (x1 x2 : α) => x1 x2
                                      theorem instIsPartialOrderGe {α : Type u} [PartialOrder α] :
                                      IsPartialOrder α fun (x1 x2 : α) => x1 x2
                                      theorem LE.isTotal {α : Type u} [LinearOrder α] :
                                      IsTotal α fun (x1 x2 : α) => x1 x2
                                      theorem instIsTotalGe {α : Type u} [LinearOrder α] :
                                      IsTotal α fun (x1 x2 : α) => x1 x2
                                      theorem instIsLinearOrderLe {α : Type u} [LinearOrder α] :
                                      IsLinearOrder α fun (x1 x2 : α) => x1 x2
                                      theorem instIsLinearOrderGe {α : Type u} [LinearOrder α] :
                                      IsLinearOrder α fun (x1 x2 : α) => x1 x2
                                      theorem instIsTrichotomousLt {α : Type u} [LinearOrder α] :
                                      IsTrichotomous α fun (x1 x2 : α) => x1 < x2
                                      theorem instIsTrichotomousGt {α : Type u} [LinearOrder α] :
                                      IsTrichotomous α fun (x1 x2 : α) => x1 > x2
                                      theorem instIsTrichotomousLe {α : Type u} [LinearOrder α] :
                                      IsTrichotomous α fun (x1 x2 : α) => x1 x2
                                      theorem instIsTrichotomousGe {α : Type u} [LinearOrder α] :
                                      IsTrichotomous α fun (x1 x2 : α) => x1 x2
                                      theorem instIsStrictTotalOrderLt {α : Type u} [LinearOrder α] :
                                      IsStrictTotalOrder α fun (x1 x2 : α) => x1 < x2
                                      theorem instIsOrderConnectedLt {α : Type u} [LinearOrder α] :
                                      IsOrderConnected α fun (x1 x2 : α) => x1 < x2
                                      @[deprecated]
                                      theorem instIsStrictWeakOrderLt {α : Type u} [LinearOrder α] :
                                      IsStrictWeakOrder α fun (x1 x2 : α) => x1 < x2
                                      theorem transitive_le {α : Type u} [Preorder α] :
                                      theorem transitive_lt {α : Type u} [Preorder α] :
                                      theorem transitive_ge {α : Type u} [Preorder α] :
                                      theorem transitive_gt {α : Type u} [Preorder α] :
                                      theorem OrderDual.isTotal_le {α : Type u} [LE α] [h : IsTotal α fun (x1 x2 : α) => x1 x2] :
                                      IsTotal αᵒᵈ fun (x1 x2 : αᵒᵈ) => x1 x2
                                      theorem isWellOrder_lt {α : Type u} [LinearOrder α] [WellFoundedLT α] :
                                      IsWellOrder α fun (x1 x2 : α) => x1 < x2
                                      theorem isWellOrder_gt {α : Type u} [LinearOrder α] [WellFoundedGT α] :
                                      IsWellOrder α fun (x1 x2 : α) => x1 > x2