Ordered structures on ULift.{v} α
#
Once these basic instances are setup, the instances of more complex typeclasses should live next to
the corresponding Prod
instances.
Equations
- ULift.instLE_mathlib = { le := fun (x y : ULift.{?u.18, ?u.17} α) => x.down ≤ y.down }
@[simp]
Equations
- ULift.instLT_mathlib = { lt := fun (x y : ULift.{?u.18, ?u.17} α) => x.down < y.down }
@[simp]
Equations
- ULift.instBEq_mathlib = { beq := fun (x y : ULift.{?u.18, ?u.17} α) => x.down == y.down }
@[simp]
Equations
- ULift.instOrd_mathlib = { compare := fun (x y : ULift.{?u.18, ?u.17} α) => compare x.down y.down }
@[simp]
Equations
- ULift.instMax_mathlib = { max := fun (x y : ULift.{?u.18, ?u.17} α) => { down := x.down ⊔ y.down } }
@[simp]
Equations
- ULift.instMin_mathlib = { min := fun (x y : ULift.{?u.18, ?u.17} α) => { down := x.down ⊓ y.down } }
@[simp]
Equations
- ULift.instSDiff_mathlib = { sdiff := fun (x y : ULift.{?u.18, ?u.17} α) => { down := x.down \ y.down } }
@[simp]
Equations
- ULift.instHasCompl = { compl := fun (x : ULift.{?u.17, ?u.16} α) => { down := x.downᶜ } }
@[simp]
theorem
ULift.instLawfulOrd_mathlib
{α : Type u}
[LE α]
[LT α]
[BEq α]
[Ord α]
[inst : Batteries.LawfulOrd α]
:
Equations
- ULift.instPreorder = Preorder.lift ULift.down
Equations
- ULift.instPartialOrder = PartialOrder.lift ULift.down ⋯