Projection from cardinal numbers to natural numbers #
In this file we define Cardinal.toNat
to be the natural projection Cardinal → ℕ
,
sending all infinite cardinals to zero.
We also prove basic lemmas about this definition.
This function sends finite cardinals to the corresponding natural, and infinite cardinals to 0.
Equations
Instances For
@[simp]
@[simp]
theorem
Cardinal.toNat_eq_zero
{c : Cardinal.{u}}
:
Cardinal.toNat c = 0 ↔ c = 0 ∨ Cardinal.aleph0 ≤ c
theorem
Cardinal.toNat_ne_zero
{c : Cardinal.{u}}
:
Cardinal.toNat c ≠ 0 ↔ c ≠ 0 ∧ c < Cardinal.aleph0
@[simp]
theorem
Cardinal.cast_toNat_of_lt_aleph0
{c : Cardinal.{u_1}}
(h : c < Cardinal.aleph0)
:
↑(Cardinal.toNat c) = c
theorem
Cardinal.toNat_apply_of_aleph0_le
{c : Cardinal.{u_1}}
(h : Cardinal.aleph0 ≤ c)
:
Cardinal.toNat c = 0
theorem
Cardinal.cast_toNat_of_aleph0_le
{c : Cardinal.{u_1}}
(h : Cardinal.aleph0 ≤ c)
:
↑(Cardinal.toNat c) = 0
theorem
Cardinal.toNat_eq_iff_eq_of_lt_aleph0
{c d : Cardinal.{u}}
(hc : c < Cardinal.aleph0)
(hd : d < Cardinal.aleph0)
:
Cardinal.toNat c = Cardinal.toNat d ↔ c = d
Two finite cardinals are equal
iff they are equal their Cardinal.toNat
projections are equal.
theorem
Cardinal.toNat_le_iff_le_of_lt_aleph0
{c d : Cardinal.{u}}
(hc : c < Cardinal.aleph0)
(hd : d < Cardinal.aleph0)
:
Cardinal.toNat c ≤ Cardinal.toNat d ↔ c ≤ d
theorem
Cardinal.toNat_lt_iff_lt_of_lt_aleph0
{c d : Cardinal.{u}}
(hc : c < Cardinal.aleph0)
(hd : d < Cardinal.aleph0)
:
Cardinal.toNat c < Cardinal.toNat d ↔ c < d
@[deprecated Cardinal.toNat_le_toNat]
theorem
Cardinal.toNat_le_of_le_of_lt_aleph0
{c d : Cardinal.{u}}
(hd : d < Cardinal.aleph0)
(hcd : c ≤ d)
:
@[deprecated Cardinal.toNat_lt_toNat]
theorem
Cardinal.toNat_lt_of_lt_of_lt_aleph0
{c d : Cardinal.{u}}
(hd : d < Cardinal.aleph0)
(hcd : c < d)
:
@[deprecated Cardinal.toNat_natCast]
Alias of Cardinal.toNat_natCast
.
@[simp]
toNat
has a right-inverse: coercion.
@[simp]
theorem
Cardinal.mk_toNat_of_infinite
{α : Type u}
[h : Infinite α]
:
Cardinal.toNat (Cardinal.mk α) = 0
theorem
Cardinal.toNat_eq_iff
{c : Cardinal.{u}}
{n : ℕ}
(hn : n ≠ 0)
:
Cardinal.toNat c = n ↔ c = ↑n
theorem
Cardinal.toNat_eq_ofNat
{c : Cardinal.{u}}
{n : ℕ}
[n.AtLeastTwo]
:
Cardinal.toNat c = OfNat.ofNat n ↔ c = OfNat.ofNat n
A version of toNat_eq_iff
for literals
theorem
Cardinal.toNat_eq_one_iff_unique
{α : Type u}
:
Cardinal.toNat (Cardinal.mk α) = 1 ↔ Subsingleton α ∧ Nonempty α
@[simp]
theorem
Cardinal.toNat_mul
(x y : Cardinal.{u_1})
:
Cardinal.toNat (x * y) = Cardinal.toNat x * Cardinal.toNat y
@[deprecated map_prod]
theorem
Cardinal.toNat_finset_prod
{α : Type u}
(s : Finset α)
(f : α → Cardinal.{u_1})
:
Cardinal.toNat (∏ i ∈ s, f i) = ∏ i ∈ s, Cardinal.toNat (f i)
@[simp]
theorem
Cardinal.toNat_add
{c d : Cardinal.{u}}
(hc : c < Cardinal.aleph0)
(hd : d < Cardinal.aleph0)
:
Cardinal.toNat (c + d) = Cardinal.toNat c + Cardinal.toNat d
@[simp]
theorem
Cardinal.toNat_lift_add_lift
{a : Cardinal.{u}}
{b : Cardinal.{v}}
(ha : a < Cardinal.aleph0)
(hb : b < Cardinal.aleph0)
:
@[deprecated Cardinal.toNat_lift_add_lift]
theorem
Cardinal.toNat_add_of_lt_aleph0
{a : Cardinal.{u}}
{b : Cardinal.{v}}
(ha : a < Cardinal.aleph0)
(hb : b < Cardinal.aleph0)
:
Alias of Cardinal.toNat_lift_add_lift
.