class
Std.Sat.AIG.RefVec.LawfulZipOperator
(α : Type)
[Hashable α]
[DecidableEq α]
(f : (aig : Std.Sat.AIG α) → aig.BinaryInput → Std.Sat.AIG.Entrypoint α)
[Std.Sat.AIG.LawfulOperator α Std.Sat.AIG.BinaryInput f]
:
- chainable : ∀ (aig : Std.Sat.AIG α) (input1 input2 : aig.BinaryInput) (h : aig.decls.size ≤ (f aig input1).aig.decls.size) (assign : α → Bool), ⟦assign, f (f aig input1).aig (input2.cast h)⟧ = ⟦assign, f aig input2⟧
Instances
theorem
Std.Sat.AIG.RefVec.LawfulZipOperator.denote_prefix_cast_ref
{α : Type}
[Hashable α]
[DecidableEq α]
{assign : α → Bool}
{aig : Std.Sat.AIG α}
{input1 input2 : aig.BinaryInput}
{f : (aig : Std.Sat.AIG α) → aig.BinaryInput → Std.Sat.AIG.Entrypoint α}
[Std.Sat.AIG.LawfulOperator α Std.Sat.AIG.BinaryInput f]
[Std.Sat.AIG.RefVec.LawfulZipOperator α f]
{h : aig.decls.size ≤ (f aig input1).aig.decls.size}
:
⟦assign, f (f aig input1).aig (input2.cast h)⟧ = ⟦assign, f aig input2⟧
theorem
Std.Sat.AIG.RefVec.LawfulZipOperator.instMkAndCached
{α : Type}
[Hashable α]
[DecidableEq α]
:
Std.Sat.AIG.RefVec.LawfulZipOperator α Std.Sat.AIG.mkAndCached
theorem
Std.Sat.AIG.RefVec.LawfulZipOperator.instMkOrCached
{α : Type}
[Hashable α]
[DecidableEq α]
:
Std.Sat.AIG.RefVec.LawfulZipOperator α Std.Sat.AIG.mkOrCached
theorem
Std.Sat.AIG.RefVec.LawfulZipOperator.instMkXorCached
{α : Type}
[Hashable α]
[DecidableEq α]
:
Std.Sat.AIG.RefVec.LawfulZipOperator α Std.Sat.AIG.mkXorCached
theorem
Std.Sat.AIG.RefVec.LawfulZipOperator.instMkBEqCached
{α : Type}
[Hashable α]
[DecidableEq α]
:
Std.Sat.AIG.RefVec.LawfulZipOperator α Std.Sat.AIG.mkBEqCached
theorem
Std.Sat.AIG.RefVec.LawfulZipOperator.instMkImpCached
{α : Type}
[Hashable α]
[DecidableEq α]
:
Std.Sat.AIG.RefVec.LawfulZipOperator α Std.Sat.AIG.mkImpCached
structure
Std.Sat.AIG.RefVec.ZipTarget
{α : Type}
[Hashable α]
[DecidableEq α]
(aig : Std.Sat.AIG α)
(len : Nat)
:
- input : aig.BinaryRefVec len
- func : (aig : Std.Sat.AIG α) → aig.BinaryInput → Std.Sat.AIG.Entrypoint α
- lawful : Std.Sat.AIG.LawfulOperator α Std.Sat.AIG.BinaryInput self.func
- chainable : Std.Sat.AIG.RefVec.LawfulZipOperator α self.func
Instances For
@[specialize #[]]
def
Std.Sat.AIG.RefVec.zip
{α : Type}
[Hashable α]
[DecidableEq α]
{len : Nat}
(aig : Std.Sat.AIG α)
(target : Std.Sat.AIG.RefVec.ZipTarget aig len)
:
Std.Sat.AIG.RefVecEntry α len
Instances For
@[irreducible, specialize #[]]
def
Std.Sat.AIG.RefVec.zip.go
{α : Type}
[Hashable α]
[DecidableEq α]
{len : Nat}
(aig : Std.Sat.AIG α)
(idx : Nat)
(s : aig.RefVec idx)
(hidx : idx ≤ len)
(lhs rhs : aig.RefVec len)
(f : (aig : Std.Sat.AIG α) → aig.BinaryInput → Std.Sat.AIG.Entrypoint α)
[Std.Sat.AIG.LawfulOperator α Std.Sat.AIG.BinaryInput f]
[Std.Sat.AIG.RefVec.LawfulZipOperator α f]
:
Std.Sat.AIG.RefVecEntry α len
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[irreducible]
theorem
Std.Sat.AIG.RefVec.zip.go_le_size
{α : Type}
[Hashable α]
[DecidableEq α]
{len : Nat}
{aig : Std.Sat.AIG α}
(idx : Nat)
(hidx : idx ≤ len)
(s : aig.RefVec idx)
(lhs rhs : aig.RefVec len)
(f : (aig : Std.Sat.AIG α) → aig.BinaryInput → Std.Sat.AIG.Entrypoint α)
[Std.Sat.AIG.LawfulOperator α Std.Sat.AIG.BinaryInput f]
[chainable : Std.Sat.AIG.RefVec.LawfulZipOperator α f]
:
aig.decls.size ≤ (Std.Sat.AIG.RefVec.zip.go aig idx s hidx lhs rhs f).aig.decls.size
theorem
Std.Sat.AIG.RefVec.zip_le_size
{α : Type}
[Hashable α]
[DecidableEq α]
{len : Nat}
{aig : Std.Sat.AIG α}
(target : Std.Sat.AIG.RefVec.ZipTarget aig len)
:
aig.decls.size ≤ (Std.Sat.AIG.RefVec.zip aig target).aig.decls.size
@[irreducible]
theorem
Std.Sat.AIG.RefVec.zip.go_decl_eq
{α : Type}
[Hashable α]
[DecidableEq α]
{len : Nat}
{aig : Std.Sat.AIG α}
(i : Nat)
(hi : i ≤ len)
(lhs rhs : aig.RefVec len)
(s : aig.RefVec i)
(f : (aig : Std.Sat.AIG α) → aig.BinaryInput → Std.Sat.AIG.Entrypoint α)
[Std.Sat.AIG.LawfulOperator α Std.Sat.AIG.BinaryInput f]
[chainable : Std.Sat.AIG.RefVec.LawfulZipOperator α f]
(idx : Nat)
(h1 : idx < aig.decls.size)
(h2 : idx < (Std.Sat.AIG.RefVec.zip.go aig i s hi lhs rhs f).aig.decls.size)
:
(Std.Sat.AIG.RefVec.zip.go aig i s hi lhs rhs f).aig.decls[idx] = aig.decls[idx]
theorem
Std.Sat.AIG.RefVec.zip_decl_eq
{α : Type}
[Hashable α]
[DecidableEq α]
{len : Nat}
{aig : Std.Sat.AIG α}
(target : Std.Sat.AIG.RefVec.ZipTarget aig len)
(idx : Nat)
(h1 : idx < aig.decls.size)
(h2 : idx < (Std.Sat.AIG.RefVec.zip aig target).aig.decls.size)
:
(Std.Sat.AIG.RefVec.zip aig target).aig.decls[idx] = aig.decls[idx]
theorem
Std.Sat.AIG.RefVec.instLawfulVecOperatorZipTargetZip
{α : Type}
[Hashable α]
[DecidableEq α]
:
Std.Sat.AIG.LawfulVecOperator α Std.Sat.AIG.RefVec.ZipTarget fun {len : Nat} => Std.Sat.AIG.RefVec.zip
@[irreducible]
theorem
Std.Sat.AIG.RefVec.zip.go_get_aux
{α : Type}
[Hashable α]
[DecidableEq α]
{len : Nat}
{aig : Std.Sat.AIG α}
(curr : Nat)
(hcurr : curr ≤ len)
(s : aig.RefVec curr)
(lhs rhs : aig.RefVec len)
(f : (aig : Std.Sat.AIG α) → aig.BinaryInput → Std.Sat.AIG.Entrypoint α)
[Std.Sat.AIG.LawfulOperator α Std.Sat.AIG.BinaryInput f]
[chainable : Std.Sat.AIG.RefVec.LawfulZipOperator α f]
(idx : Nat)
(hidx : idx < curr)
(hfoo : aig.decls.size ≤ (Std.Sat.AIG.RefVec.zip.go aig curr s hcurr lhs rhs f).aig.decls.size)
:
(Std.Sat.AIG.RefVec.zip.go aig curr s hcurr lhs rhs f).vec.get idx ⋯ = (s.get idx hidx).cast hfoo
theorem
Std.Sat.AIG.RefVec.zip.go_get
{α : Type}
[Hashable α]
[DecidableEq α]
{len : Nat}
{aig : Std.Sat.AIG α}
(curr : Nat)
(hcurr : curr ≤ len)
(s : aig.RefVec curr)
(lhs rhs : aig.RefVec len)
(f : (aig : Std.Sat.AIG α) → aig.BinaryInput → Std.Sat.AIG.Entrypoint α)
[Std.Sat.AIG.LawfulOperator α Std.Sat.AIG.BinaryInput f]
[chainable : Std.Sat.AIG.RefVec.LawfulZipOperator α f]
(idx : Nat)
(hidx : idx < curr)
:
(Std.Sat.AIG.RefVec.zip.go aig curr s hcurr lhs rhs f).vec.get idx ⋯ = (s.get idx hidx).cast ⋯
theorem
Std.Sat.AIG.RefVec.zip.go_denote_mem_prefix
{α : Type}
[Hashable α]
[DecidableEq α]
{len : Nat}
{assign : α → Bool}
{aig : Std.Sat.AIG α}
(curr : Nat)
(hcurr : curr ≤ len)
(s : aig.RefVec curr)
(lhs rhs : aig.RefVec len)
(f : (aig : Std.Sat.AIG α) → aig.BinaryInput → Std.Sat.AIG.Entrypoint α)
[Std.Sat.AIG.LawfulOperator α Std.Sat.AIG.BinaryInput f]
[chainable : Std.Sat.AIG.RefVec.LawfulZipOperator α f]
(start : Nat)
(hstart : start < aig.decls.size)
:
⟦assign, { aig := (Std.Sat.AIG.RefVec.zip.go aig curr s hcurr lhs rhs f).aig, ref := { gate := start, hgate := ⋯ } }⟧ = ⟦assign, { aig := aig, ref := { gate := start, hgate := hstart } }⟧
@[irreducible]
theorem
Std.Sat.AIG.RefVec.zip.denote_go
{α : Type}
[Hashable α]
[DecidableEq α]
{len : Nat}
{assign : α → Bool}
{aig : Std.Sat.AIG α}
(curr : Nat)
(hcurr : curr ≤ len)
(s : aig.RefVec curr)
(lhs rhs : aig.RefVec len)
(f : (aig : Std.Sat.AIG α) → aig.BinaryInput → Std.Sat.AIG.Entrypoint α)
[Std.Sat.AIG.LawfulOperator α Std.Sat.AIG.BinaryInput f]
[chainable : Std.Sat.AIG.RefVec.LawfulZipOperator α f]
(idx : Nat)
(hidx1 : idx < len)
:
curr ≤ idx →
⟦assign,
{ aig := (Std.Sat.AIG.RefVec.zip.go aig curr s hcurr lhs rhs f).aig,
ref := (Std.Sat.AIG.RefVec.zip.go aig curr s hcurr lhs rhs f).vec.get idx hidx1 }⟧ = ⟦assign, f aig { lhs := lhs.get idx hidx1, rhs := rhs.get idx hidx1 }⟧
@[simp]
theorem
Std.Sat.AIG.RefVec.denote_zip
{α : Type}
[Hashable α]
[DecidableEq α]
{len : Nat}
{assign : α → Bool}
{aig : Std.Sat.AIG α}
(target : Std.Sat.AIG.RefVec.ZipTarget aig len)
(idx : Nat)
(hidx : idx < len)
:
⟦assign,
{ aig := (Std.Sat.AIG.RefVec.zip aig target).aig, ref := (Std.Sat.AIG.RefVec.zip aig target).vec.get idx hidx }⟧ = ⟦assign, target.func aig { lhs := target.input.lhs.get idx hidx, rhs := target.input.rhs.get idx hidx }⟧