This module contains the definition of the LRAT format (https://www.cs.utexas.edu/~marijn/publications/lrat.pdf)
as a type Action
, that is polymorphic over the variables used in the CNF. The type
IntAction := Action (Array Int) Nat
is the version that is used by the checker as input and should
be considered the parsing target for LRAT proofs.
β
is for the type of a clause, α
is for the type of variables
- addEmpty: {β : Type u} → {α : Type v} → Nat → Array Nat → Std.Tactic.BVDecide.LRAT.Action β α
- addRup: {β : Type u} → {α : Type v} → Nat → β → Array Nat → Std.Tactic.BVDecide.LRAT.Action β α
- addRat: {β : Type u} → {α : Type v} → Nat → β → Std.Sat.Literal α → Array Nat → Array (Nat × Array Nat) → Std.Tactic.BVDecide.LRAT.Action β α
- del: {β : Type u} → {α : Type v} → Array Nat → Std.Tactic.BVDecide.LRAT.Action β α
Instances For
instance
Std.Tactic.BVDecide.LRAT.instInhabitedAction
{a✝ : Type u_1}
{a✝¹ : Type u_2}
:
Inhabited (Std.Tactic.BVDecide.LRAT.Action a✝ a✝¹)
Equations
- Std.Tactic.BVDecide.LRAT.instInhabitedAction = { default := Std.Tactic.BVDecide.LRAT.Action.addEmpty default default }
instance
Std.Tactic.BVDecide.LRAT.instBEqAction
{β✝ : Type u_1}
{α✝ : Type u_2}
[BEq β✝]
[BEq α✝]
:
BEq (Std.Tactic.BVDecide.LRAT.Action β✝ α✝)
instance
Std.Tactic.BVDecide.LRAT.instReprAction
{β✝ : Type u_1}
{α✝ : Type u_2}
[Repr β✝]
[Repr α✝]
:
Repr (Std.Tactic.BVDecide.LRAT.Action β✝ α✝)
Equations
- Std.Tactic.BVDecide.LRAT.instReprAction = { reprPrec := Std.Tactic.BVDecide.LRAT.reprAction✝ }
def
Std.Tactic.BVDecide.LRAT.Action.toString
{β : Type u_1}
{α : Type u_2}
[ToString β]
[ToString α]
:
Instances For
instance
Std.Tactic.BVDecide.LRAT.instToStringAction
{β : Type u_1}
{α : Type u_2}
[ToString β]
[ToString α]
: