Ordinal
represents a bounded value for second, which ranges between 0 and 59 or 60. This accounts
for potential leap second.
Instances For
Equations
- Std.Time.Second.instBEqOrdinal = { beq := fun (x y : Std.Time.Second.Ordinal leap) => x.val == y.val }
Equations
- Std.Time.Second.instLEOrdinal = { le := fun (x y : Std.Time.Second.Ordinal leap) => x.val ≤ y.val }
instance
Std.Time.Second.instOfNatOrdinal
{leap : Bool}
{n : Nat}
:
OfNat (Std.Time.Second.Ordinal leap) n
Equations
- One or more equations did not get rendered due to their size.
Equations
- Std.Time.Second.instDecidableLeOrdinal = inferInstanceAs (Decidable (x.val ≤ y.val))
Equations
- Std.Time.Second.instDecidableLtOrdinal = inferInstanceAs (Decidable (x.val < y.val))
Equations
- Std.Time.Second.instOffsetRepr = Std.Time.Internal.UnitVal.instRepr
Equations
- Std.Time.Second.instOffsetBEq = Std.Time.Internal.instBEqUnitVal
Equations
- Std.Time.Second.instOffsetAdd = Std.Time.Internal.UnitVal.instAdd
Equations
- Std.Time.Second.instOffsetLE = Std.Time.Internal.UnitVal.instLE
Equations
- Std.Time.Second.instOffsetToString = Std.Time.Internal.UnitVal.instToString
Equations
- Std.Time.Second.instOfNatOffset = { ofNat := Std.Time.Internal.UnitVal.ofNat n }
@[inline]
Creates an Second.Offset
from a natural number.
Equations
- Std.Time.Second.Offset.ofNat data = { val := ↑data }
Instances For
@[inline]
Converts an Ordinal
to an Second.Offset
.
Equations
- ordinal.toOffset = { val := ordinal.val }