analysis.locally_convex.with_seminorms
β·
Mathlib.Analysis.LocallyConvex.WithSeminorms
The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(last sync)
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -402,7 +402,7 @@ theorem WithSeminorms.isOpen_iff_mem_balls (hp : WithSeminorms p) (U : Set E) :
#align with_seminorms.is_open_iff_mem_balls WithSeminorms.isOpen_iff_mem_balls
-/
-/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (x Β«expr β Β» 0) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:642:2: warning: expanding binder collection (x Β«expr β Β» 0) -/
#print WithSeminorms.T1_of_separating /-
/- Note that through the following lemmas, one also immediately has that separating families
of seminorms induce Tβ and Tβ topologies by `topological_add_group.t2_space`
@@ -434,7 +434,7 @@ theorem WithSeminorms.separating_of_T1 [T1Space E] (hp : WithSeminorms p) (x : E
#align with_seminorms.separating_of_t1 WithSeminorms.separating_of_T1
-/
-/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (x Β«expr β Β» 0) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:642:2: warning: expanding binder collection (x Β«expr β Β» 0) -/
#print WithSeminorms.separating_iff_T1 /-
/-- A family of seminorms is separating iff it induces a Tβ topology. -/
theorem WithSeminorms.separating_iff_T1 (hp : WithSeminorms p) :
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -380,7 +380,7 @@ theorem WithSeminorms.hasBasis_ball (hp : WithSeminorms p) {x : E} :
ext sr : 1
have : (sr.fst.sup p).ball (x +α΅₯ 0) sr.snd = x +α΅₯ (sr.fst.sup p).ball 0 sr.snd :=
Eq.symm (Seminorm.vadd_ball (sr.fst.sup p))
- rwa [vadd_eq_add, add_zero] at this
+ rwa [vadd_eq_add, add_zero] at this
#align with_seminorms.has_basis_ball WithSeminorms.hasBasis_ball
-/
@@ -622,12 +622,12 @@ theorem WithSeminorms.isVonNBounded_iff_finset_seminorm_bounded {s : Set E} (hp
rw [hp.has_basis.isVonNBounded_iff]
constructor
Β· intro h I
- simp only [id.def] at h
+ simp only [id.def] at h
specialize h ((I.sup p).ball 0 1) (p.basis_sets_mem I zero_lt_one)
rcases h with β¨r, hr, hβ©
cases' NormedField.exists_lt_norm π r with a ha
specialize h a (le_of_lt ha)
- rw [Seminorm.smul_ball_zero (norm_pos_iff.1 <| hr.trans ha), mul_one] at h
+ rw [Seminorm.smul_ball_zero (norm_pos_iff.1 <| hr.trans ha), mul_one] at h
refine' β¨βaβ, lt_trans hr ha, _β©
intro x hx
specialize h hx
@@ -636,7 +636,7 @@ theorem WithSeminorms.isVonNBounded_iff_finset_seminorm_bounded {s : Set E} (hp
rcases p.basis_sets_iff.mp hs' with β¨I, r, hr, hs'β©
rw [id.def, hs']
rcases h I with β¨r', hr', h'β©
- simp_rw [β (I.sup p).mem_ball_zero] at h'
+ simp_rw [β (I.sup p).mem_ball_zero] at h'
refine' Absorbs.mono_right _ h'
exact (Finset.sup I p).ball_zero_absorbs_ball_zero hr
#align with_seminorms.is_vonN_bounded_iff_finset_seminorm_bounded WithSeminorms.isVonNBounded_iff_finset_seminorm_bounded
@@ -647,7 +647,7 @@ theorem WithSeminorms.image_isVonNBounded_iff_finset_seminorm_bounded (f : G β
(hp : WithSeminorms p) :
Bornology.IsVonNBounded π (f '' s) β
β I : Finset ΞΉ, β (r : _) (hr : 0 < r), β x β s, I.sup p (f x) < r :=
- by simp_rw [hp.is_vonN_bounded_iff_finset_seminorm_bounded, Set.ball_image_iff]
+ by simp_rw [hp.is_vonN_bounded_iff_finset_seminorm_bounded, Set.forall_mem_image]
#align with_seminorms.image_is_vonN_bounded_iff_finset_seminorm_bounded WithSeminorms.image_isVonNBounded_iff_finset_seminorm_bounded
-/
@@ -679,7 +679,7 @@ theorem WithSeminorms.isVonNBounded_iff_seminorm_bounded {s : Set E} (hp : WithS
theorem WithSeminorms.image_isVonNBounded_iff_seminorm_bounded (f : G β E) {s : Set G}
(hp : WithSeminorms p) :
Bornology.IsVonNBounded π (f '' s) β β i : ΞΉ, β (r : _) (hr : 0 < r), β x β s, p i (f x) < r :=
- by simp_rw [hp.is_vonN_bounded_iff_seminorm_bounded, Set.ball_image_iff]
+ by simp_rw [hp.is_vonN_bounded_iff_seminorm_bounded, Set.forall_mem_image]
#align with_seminorms.image_is_vonN_bounded_iff_seminorm_bounded WithSeminorms.image_isVonNBounded_iff_seminorm_bounded
-/
@@ -752,7 +752,7 @@ theorem cont_withSeminorms_normedSpace (F) [SeminormedAddCommGroup F] [NormedSpa
[UniformSpace E] [UniformAddGroup E] {p : ΞΉ β Seminorm π E} (hp : WithSeminorms p)
(f : E βββ[Οββ] F) (hf : β (s : Finset ΞΉ) (C : ββ₯0), (normSeminorm πβ F).comp f β€ C β’ s.sup p) :
Continuous f := by
- rw [β Seminorm.isBounded_const (Fin 1)] at hf
+ rw [β Seminorm.isBounded_const (Fin 1)] at hf
exact continuous_from_bounded hp (norm_withSeminorms πβ F) f hf
#align seminorm.cont_with_seminorms_normed_space Seminorm.cont_withSeminorms_normedSpace
-/
@@ -762,7 +762,7 @@ theorem cont_normedSpace_to_withSeminorms (E) [SeminormedAddCommGroup E] [Normed
[UniformSpace F] [UniformAddGroup F] {q : ΞΉ β Seminorm πβ F} (hq : WithSeminorms q)
(f : E βββ[Οββ] F) (hf : β i : ΞΉ, β C : ββ₯0, (q i).comp f β€ C β’ normSeminorm π E) :
Continuous f := by
- rw [β Seminorm.const_isBounded (Fin 1)] at hf
+ rw [β Seminorm.const_isBounded (Fin 1)] at hf
exact continuous_from_bounded (norm_withSeminorms π E) hq f hf
#align seminorm.cont_normed_space_to_with_seminorms Seminorm.cont_normedSpace_to_withSeminorms
-/
@@ -786,8 +786,8 @@ theorem WithSeminorms.toLocallyConvexSpace {p : SeminormFamily π E ΞΉ} (hp :
Β· rw [hp.1, AddGroupFilterBasis.nhds_eq _, AddGroupFilterBasis.N_zero]
exact FilterBasis.hasBasis _
Β· intro s hs
- change s β Set.iUnion _ at hs
- simp_rw [Set.mem_iUnion, Set.mem_singleton_iff] at hs
+ change s β Set.iUnion _ at hs
+ simp_rw [Set.mem_iUnion, Set.mem_singleton_iff] at hs
rcases hs with β¨I, r, hr, rflβ©
exact convex_ball _ _ _
#align with_seminorms.to_locally_convex_space WithSeminorms.toLocallyConvexSpace
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -113,7 +113,20 @@ theorem basisSets_nonempty [Nonempty ΞΉ] : p.basis_sets.Nonempty :=
#print SeminormFamily.basisSets_intersect /-
theorem basisSets_intersect (U V : Set E) (hU : U β p.basis_sets) (hV : V β p.basis_sets) :
- β (z : Set E) (H : z β p.basis_sets), z β U β© V := by classical
+ β (z : Set E) (H : z β p.basis_sets), z β U β© V := by
+ classical
+ rcases p.basis_sets_iff.mp hU with β¨s, rβ, hrβ, hUβ©
+ rcases p.basis_sets_iff.mp hV with β¨t, rβ, hrβ, hVβ©
+ use((s βͺ t).sup p).ball 0 (min rβ rβ)
+ refine' β¨p.basis_sets_mem (s βͺ t) (lt_min_iff.mpr β¨hrβ, hrββ©), _β©
+ rw [hU, hV, ball_finset_sup_eq_Inter _ _ _ (lt_min_iff.mpr β¨hrβ, hrββ©),
+ ball_finset_sup_eq_Inter _ _ _ hrβ, ball_finset_sup_eq_Inter _ _ _ hrβ]
+ exact
+ Set.subset_inter
+ (Set.iInterβ_mono' fun i hi =>
+ β¨i, Finset.subset_union_left _ _ hi, ball_mono <| min_le_left _ _β©)
+ (Set.iInterβ_mono' fun i hi =>
+ β¨i, Finset.subset_union_right _ _ hi, ball_mono <| min_le_right _ _β©)
#align seminorm_family.basis_sets_intersect SeminormFamily.basisSets_intersect
-/
@@ -281,7 +294,22 @@ theorem const_isBounded (ΞΉ : Type _) [Nonempty ΞΉ] {p : Seminorm π E} {q :
#print Seminorm.isBounded_sup /-
theorem isBounded_sup {p : ΞΉ β Seminorm π E} {q : ΞΉ' β Seminorm πβ F} {f : E βββ[Οββ] F}
(hf : IsBounded p q f) (s' : Finset ΞΉ') :
- β (C : ββ₯0) (s : Finset ΞΉ), (s'.sup q).comp f β€ C β’ s.sup p := by classical
+ β (C : ββ₯0) (s : Finset ΞΉ), (s'.sup q).comp f β€ C β’ s.sup p := by
+ classical
+ obtain rfl | hs' := s'.eq_empty_or_nonempty
+ Β· exact β¨1, β
, by simp [Seminorm.bot_eq_zero]β©
+ choose fβ fC hf using hf
+ use s'.card β’ s'.sup fC, Finset.biUnion s' fβ
+ have hs : β i : ΞΉ', i β s' β (q i).comp f β€ s'.sup fC β’ (Finset.biUnion s' fβ).sup p :=
+ by
+ intro i hi
+ refine' (hf i).trans (smul_le_smul _ (Finset.le_sup hi))
+ exact Finset.sup_mono (Finset.subset_biUnion_of_mem fβ hi)
+ refine' (comp_mono f (finset_sup_le_sum q s')).trans _
+ simp_rw [β pullback_apply, map_sum, pullback_apply]
+ refine' (Finset.sum_le_sum hs).trans _
+ rw [Finset.sum_const, smul_assoc]
+ exact le_rfl
#align seminorm.is_bounded_sup Seminorm.isBounded_sup
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -113,20 +113,7 @@ theorem basisSets_nonempty [Nonempty ΞΉ] : p.basis_sets.Nonempty :=
#print SeminormFamily.basisSets_intersect /-
theorem basisSets_intersect (U V : Set E) (hU : U β p.basis_sets) (hV : V β p.basis_sets) :
- β (z : Set E) (H : z β p.basis_sets), z β U β© V := by
- classical
- rcases p.basis_sets_iff.mp hU with β¨s, rβ, hrβ, hUβ©
- rcases p.basis_sets_iff.mp hV with β¨t, rβ, hrβ, hVβ©
- use((s βͺ t).sup p).ball 0 (min rβ rβ)
- refine' β¨p.basis_sets_mem (s βͺ t) (lt_min_iff.mpr β¨hrβ, hrββ©), _β©
- rw [hU, hV, ball_finset_sup_eq_Inter _ _ _ (lt_min_iff.mpr β¨hrβ, hrββ©),
- ball_finset_sup_eq_Inter _ _ _ hrβ, ball_finset_sup_eq_Inter _ _ _ hrβ]
- exact
- Set.subset_inter
- (Set.iInterβ_mono' fun i hi =>
- β¨i, Finset.subset_union_left _ _ hi, ball_mono <| min_le_left _ _β©)
- (Set.iInterβ_mono' fun i hi =>
- β¨i, Finset.subset_union_right _ _ hi, ball_mono <| min_le_right _ _β©)
+ β (z : Set E) (H : z β p.basis_sets), z β U β© V := by classical
#align seminorm_family.basis_sets_intersect SeminormFamily.basisSets_intersect
-/
@@ -294,22 +281,7 @@ theorem const_isBounded (ΞΉ : Type _) [Nonempty ΞΉ] {p : Seminorm π E} {q :
#print Seminorm.isBounded_sup /-
theorem isBounded_sup {p : ΞΉ β Seminorm π E} {q : ΞΉ' β Seminorm πβ F} {f : E βββ[Οββ] F}
(hf : IsBounded p q f) (s' : Finset ΞΉ') :
- β (C : ββ₯0) (s : Finset ΞΉ), (s'.sup q).comp f β€ C β’ s.sup p := by
- classical
- obtain rfl | hs' := s'.eq_empty_or_nonempty
- Β· exact β¨1, β
, by simp [Seminorm.bot_eq_zero]β©
- choose fβ fC hf using hf
- use s'.card β’ s'.sup fC, Finset.biUnion s' fβ
- have hs : β i : ΞΉ', i β s' β (q i).comp f β€ s'.sup fC β’ (Finset.biUnion s' fβ).sup p :=
- by
- intro i hi
- refine' (hf i).trans (smul_le_smul _ (Finset.le_sup hi))
- exact Finset.sup_mono (Finset.subset_biUnion_of_mem fβ hi)
- refine' (comp_mono f (finset_sup_le_sum q s')).trans _
- simp_rw [β pullback_apply, map_sum, pullback_apply]
- refine' (Finset.sum_le_sum hs).trans _
- rw [Finset.sum_const, smul_assoc]
- exact le_rfl
+ β (C : ββ₯0) (s : Finset ΞΉ), (s'.sup q).comp f β€ C β’ s.sup p := by classical
#align seminorm.is_bounded_sup Seminorm.isBounded_sup
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -619,7 +619,7 @@ variable [TopologicalSpace E]
theorem WithSeminorms.isVonNBounded_iff_finset_seminorm_bounded {s : Set E} (hp : WithSeminorms p) :
Bornology.IsVonNBounded π s β β I : Finset ΞΉ, β (r : _) (hr : 0 < r), β x β s, I.sup p x < r :=
by
- rw [hp.has_basis.isVonNBounded_basis_iff]
+ rw [hp.has_basis.isVonNBounded_iff]
constructor
Β· intro h I
simp only [id.def] at h
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -306,7 +306,7 @@ theorem isBounded_sup {p : ΞΉ β Seminorm π E} {q : ΞΉ' β Seminorm πβ
refine' (hf i).trans (smul_le_smul _ (Finset.le_sup hi))
exact Finset.sup_mono (Finset.subset_biUnion_of_mem fβ hi)
refine' (comp_mono f (finset_sup_le_sum q s')).trans _
- simp_rw [β pullback_apply, AddMonoidHom.map_sum, pullback_apply]
+ simp_rw [β pullback_apply, map_sum, pullback_apply]
refine' (Finset.sum_le_sum hs).trans _
rw [Finset.sum_const, smul_assoc]
exact le_rfl
@@ -426,7 +426,7 @@ theorem WithSeminorms.T1_of_separating (hp : WithSeminorms p)
theorem WithSeminorms.separating_of_T1 [T1Space E] (hp : WithSeminorms p) (x : E) (hx : x β 0) :
β i, p i x β 0 := by
have := ((t1Space_TFAE E).out 0 9).mp inferInstance
- by_contra' h
+ by_contra! h
refine' hx (this _)
rw [hp.has_basis_zero_ball.specializes_iff]
rintro β¨s, rβ© (hr : 0 < r)
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -568,7 +568,7 @@ theorem SeminormFamily.withSeminorms_iff_uniformSpace_eq_iInf [u : UniformSpace
by
rw [p.with_seminorms_iff_nhds_eq_infi,
UniformAddGroup.ext_iff inferInstance (uniformAddGroup_iInf fun i => inferInstance),
- toTopologicalSpace_iInf, nhds_iInf]
+ UniformSpace.toTopologicalSpace_iInf, nhds_iInf]
trace
"./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `congrm #[[expr Β«expr = Β»(_, Β«exprβ¨
, Β»((i), _))]]"
exact @comap_norm_nhds_zero _ (p i).toAddGroupSeminorm.toSeminormedAddGroup
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -888,8 +888,7 @@ variable [UniformSpace E] [UniformAddGroup E]
#print WithSeminorms.first_countable /-
/-- If the topology of a space is induced by a countable family of seminorms, then the topology
is first countable. -/
-theorem WithSeminorms.first_countable (hp : WithSeminorms p) :
- TopologicalSpace.FirstCountableTopology E :=
+theorem WithSeminorms.first_countable (hp : WithSeminorms p) : FirstCountableTopology E :=
by
have : (π (0 : E)).IsCountablyGenerated :=
by
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce64cd319bb6b3e82f31c2d38e79080d377be451
@@ -3,10 +3,10 @@ Copyright (c) 2022 Moritz Doll. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Moritz Doll, Anatole Dedecker
-/
-import Mathbin.Analysis.Seminorm
-import Mathbin.Analysis.LocallyConvex.Bounded
-import Mathbin.Topology.Algebra.FilterBasis
-import Mathbin.Topology.Algebra.Module.LocallyConvex
+import Analysis.Seminorm
+import Analysis.LocallyConvex.Bounded
+import Topology.Algebra.FilterBasis
+import Topology.Algebra.Module.LocallyConvex
#align_import analysis.locally_convex.with_seminorms from "leanprover-community/mathlib"@"a87d22575d946e1e156fc1edd1e1269600a8a282"
@@ -402,7 +402,7 @@ theorem WithSeminorms.isOpen_iff_mem_balls (hp : WithSeminorms p) (U : Set E) :
#align with_seminorms.is_open_iff_mem_balls WithSeminorms.isOpen_iff_mem_balls
-/
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (x Β«expr β Β» 0) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (x Β«expr β Β» 0) -/
#print WithSeminorms.T1_of_separating /-
/- Note that through the following lemmas, one also immediately has that separating families
of seminorms induce Tβ and Tβ topologies by `topological_add_group.t2_space`
@@ -434,7 +434,7 @@ theorem WithSeminorms.separating_of_T1 [T1Space E] (hp : WithSeminorms p) (x : E
#align with_seminorms.separating_of_t1 WithSeminorms.separating_of_T1
-/
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (x Β«expr β Β» 0) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (x Β«expr β Β» 0) -/
#print WithSeminorms.separating_iff_T1 /-
/-- A family of seminorms is separating iff it induces a Tβ topology. -/
theorem WithSeminorms.separating_iff_T1 (hp : WithSeminorms p) :
mathlib commit https://github.com/leanprover-community/mathlib/commit/63721b2c3eba6c325ecf8ae8cca27155a4f6306f
@@ -117,7 +117,7 @@ theorem basisSets_intersect (U V : Set E) (hU : U β p.basis_sets) (hV : V β
classical
rcases p.basis_sets_iff.mp hU with β¨s, rβ, hrβ, hUβ©
rcases p.basis_sets_iff.mp hV with β¨t, rβ, hrβ, hVβ©
- use ((s βͺ t).sup p).ball 0 (min rβ rβ)
+ use((s βͺ t).sup p).ball 0 (min rβ rβ)
refine' β¨p.basis_sets_mem (s βͺ t) (lt_min_iff.mpr β¨hrβ, hrββ©), _β©
rw [hU, hV, ball_finset_sup_eq_Inter _ _ _ (lt_min_iff.mpr β¨hrβ, hrββ©),
ball_finset_sup_eq_Inter _ _ _ hrβ, ball_finset_sup_eq_Inter _ _ _ hrβ]
@@ -144,7 +144,7 @@ theorem basisSets_add (U) (hU : U β p.basis_sets) :
β (V : Set E) (H : V β p.basis_sets), V + V β U :=
by
rcases p.basis_sets_iff.mp hU with β¨s, r, hr, hUβ©
- use (s.sup p).ball 0 (r / 2)
+ use(s.sup p).ball 0 (r / 2)
refine' β¨p.basis_sets_mem s (div_pos hr zero_lt_two), _β©
refine' Set.Subset.trans (ball_add_ball_subset (s.sup p) (r / 2) (r / 2) 0 0) _
rw [hU, add_zero, add_halves']
@@ -207,7 +207,7 @@ theorem basisSets_smul_left (x : π) (U : Set E) (hU : U β p.basis_sets) :
rw [hU]
by_cases h : x β 0
Β· rw [(s.sup p).smul_ball_preimage 0 r x h, smul_zero]
- use (s.sup p).ball 0 (r / βxβ)
+ use(s.sup p).ball 0 (r / βxβ)
exact β¨p.basis_sets_mem s (div_pos hr (norm_pos_iff.mpr h)), subset.rflβ©
refine' β¨(s.sup p).ball 0 r, p.basis_sets_mem s hr, _β©
simp only [not_ne_iff.mp h, subset_def, mem_ball_zero, hr, mem_univ, map_zero, imp_true_iff,
@@ -286,7 +286,7 @@ theorem const_isBounded (ΞΉ : Type _) [Nonempty ΞΉ] {p : Seminorm π E} {q :
constructor <;> intro h i
Β· rcases h i with β¨s, C, hβ©
exact β¨C, le_trans h (smul_le_smul (Finset.sup_le fun _ _ => le_rfl) le_rfl)β©
- use {Classical.arbitrary ΞΉ}
+ use{Classical.arbitrary ΞΉ}
simp only [h, Finset.sup_singleton]
#align seminorm.const_is_bounded Seminorm.const_isBounded
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/8ea5598db6caeddde6cb734aa179cc2408dbd345
@@ -2,17 +2,14 @@
Copyright (c) 2022 Moritz Doll. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Moritz Doll, Anatole Dedecker
-
-! This file was ported from Lean 3 source module analysis.locally_convex.with_seminorms
-! leanprover-community/mathlib commit a87d22575d946e1e156fc1edd1e1269600a8a282
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathbin.Analysis.Seminorm
import Mathbin.Analysis.LocallyConvex.Bounded
import Mathbin.Topology.Algebra.FilterBasis
import Mathbin.Topology.Algebra.Module.LocallyConvex
+#align_import analysis.locally_convex.with_seminorms from "leanprover-community/mathlib"@"a87d22575d946e1e156fc1edd1e1269600a8a282"
+
/-!
# Topology induced by a family of seminorms
@@ -405,7 +402,7 @@ theorem WithSeminorms.isOpen_iff_mem_balls (hp : WithSeminorms p) (U : Set E) :
#align with_seminorms.is_open_iff_mem_balls WithSeminorms.isOpen_iff_mem_balls
-/
-/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (x Β«expr β Β» 0) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (x Β«expr β Β» 0) -/
#print WithSeminorms.T1_of_separating /-
/- Note that through the following lemmas, one also immediately has that separating families
of seminorms induce Tβ and Tβ topologies by `topological_add_group.t2_space`
@@ -437,7 +434,7 @@ theorem WithSeminorms.separating_of_T1 [T1Space E] (hp : WithSeminorms p) (x : E
#align with_seminorms.separating_of_t1 WithSeminorms.separating_of_T1
-/
-/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (x Β«expr β Β» 0) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (x Β«expr β Β» 0) -/
#print WithSeminorms.separating_iff_T1 /-
/-- A family of seminorms is separating iff it induces a Tβ topology. -/
theorem WithSeminorms.separating_iff_T1 (hp : WithSeminorms p) :
mathlib commit https://github.com/leanprover-community/mathlib/commit/9fb8964792b4237dac6200193a0d533f1b3f7423
@@ -86,18 +86,24 @@ def basisSets (p : SeminormFamily π E ΞΉ) : Set (Set E) :=
variable (p : SeminormFamily π E ΞΉ)
+#print SeminormFamily.basisSets_iff /-
theorem basisSets_iff {U : Set E} :
U β p.basis_sets β β (i : Finset ΞΉ) (r : _) (hr : 0 < r), U = ball (i.sup p) 0 r := by
simp only [basis_sets, mem_Union, mem_singleton_iff]
#align seminorm_family.basis_sets_iff SeminormFamily.basisSets_iff
+-/
+#print SeminormFamily.basisSets_mem /-
theorem basisSets_mem (i : Finset ΞΉ) {r : β} (hr : 0 < r) : (i.sup p).ball 0 r β p.basis_sets :=
(basisSets_iff _).mpr β¨i, _, hr, rflβ©
#align seminorm_family.basis_sets_mem SeminormFamily.basisSets_mem
+-/
+#print SeminormFamily.basisSets_singleton_mem /-
theorem basisSets_singleton_mem (i : ΞΉ) {r : β} (hr : 0 < r) : (p i).ball 0 r β p.basis_sets :=
(basisSets_iff _).mpr β¨{i}, _, hr, by rw [Finset.sup_singleton]β©
#align seminorm_family.basis_sets_singleton_mem SeminormFamily.basisSets_singleton_mem
+-/
#print SeminormFamily.basisSets_nonempty /-
theorem basisSets_nonempty [Nonempty ΞΉ] : p.basis_sets.Nonempty :=
@@ -108,6 +114,7 @@ theorem basisSets_nonempty [Nonempty ΞΉ] : p.basis_sets.Nonempty :=
#align seminorm_family.basis_sets_nonempty SeminormFamily.basisSets_nonempty
-/
+#print SeminormFamily.basisSets_intersect /-
theorem basisSets_intersect (U V : Set E) (hU : U β p.basis_sets) (hV : V β p.basis_sets) :
β (z : Set E) (H : z β p.basis_sets), z β U β© V := by
classical
@@ -124,14 +131,18 @@ theorem basisSets_intersect (U V : Set E) (hU : U β p.basis_sets) (hV : V β
(Set.iInterβ_mono' fun i hi =>
β¨i, Finset.subset_union_right _ _ hi, ball_mono <| min_le_right _ _β©)
#align seminorm_family.basis_sets_intersect SeminormFamily.basisSets_intersect
+-/
+#print SeminormFamily.basisSets_zero /-
theorem basisSets_zero (U) (hU : U β p.basis_sets) : (0 : E) β U :=
by
rcases p.basis_sets_iff.mp hU with β¨ΞΉ', r, hr, hUβ©
rw [hU, mem_ball_zero, map_zero]
exact hr
#align seminorm_family.basis_sets_zero SeminormFamily.basisSets_zero
+-/
+#print SeminormFamily.basisSets_add /-
theorem basisSets_add (U) (hU : U β p.basis_sets) :
β (V : Set E) (H : V β p.basis_sets), V + V β U :=
by
@@ -141,7 +152,9 @@ theorem basisSets_add (U) (hU : U β p.basis_sets) :
refine' Set.Subset.trans (ball_add_ball_subset (s.sup p) (r / 2) (r / 2) 0 0) _
rw [hU, add_zero, add_halves']
#align seminorm_family.basis_sets_add SeminormFamily.basisSets_add
+-/
+#print SeminormFamily.basisSets_neg /-
theorem basisSets_neg (U) (hU' : U β p.basis_sets) :
β (V : Set E) (H : V β p.basis_sets), V β (fun x : E => -x) β»ΒΉ' U :=
by
@@ -149,6 +162,7 @@ theorem basisSets_neg (U) (hU' : U β p.basis_sets) :
rw [hU, neg_preimage, neg_ball (s.sup p), neg_zero]
exact β¨U, hU', Eq.subset hUβ©
#align seminorm_family.basis_sets_neg SeminormFamily.basisSets_neg
+-/
#print SeminormFamily.addGroupFilterBasis /-
/-- The `add_group_filter_basis` induced by the filter basis `seminorm_basis_zero`. -/
@@ -158,6 +172,7 @@ protected def addGroupFilterBasis [Nonempty ΞΉ] : AddGroupFilterBasis E :=
#align seminorm_family.add_group_filter_basis SeminormFamily.addGroupFilterBasis
-/
+#print SeminormFamily.basisSets_smul_right /-
theorem basisSets_smul_right (v : E) (U : Set E) (hU : U β p.basis_sets) :
βαΆ x : π in π 0, x β’ v β U :=
by
@@ -171,9 +186,11 @@ theorem basisSets_smul_right (v : E) (U : Set E) (hU : U β p.basis_sets) :
simp_rw [le_antisymm (not_lt.mp h) (map_nonneg _ v), MulZeroClass.mul_zero, hr]
exact IsOpen.mem_nhds isOpen_univ (mem_univ 0)
#align seminorm_family.basis_sets_smul_right SeminormFamily.basisSets_smul_right
+-/
variable [Nonempty ΞΉ]
+#print SeminormFamily.basisSets_smul /-
theorem basisSets_smul (U) (hU : U β p.basis_sets) :
β (V : Set π) (H : V β π (0 : π)) (W : Set E) (H : W β p.AddGroupFilterBasis.sets), V β’ W β U :=
by
@@ -183,7 +200,9 @@ theorem basisSets_smul (U) (hU : U β p.basis_sets) :
refine' Set.Subset.trans (ball_smul_ball (s.sup p) r.sqrt r.sqrt) _
rw [hU, Real.mul_self_sqrt (le_of_lt hr)]
#align seminorm_family.basis_sets_smul SeminormFamily.basisSets_smul
+-/
+#print SeminormFamily.basisSets_smul_left /-
theorem basisSets_smul_left (x : π) (U : Set E) (hU : U β p.basis_sets) :
β (V : Set E) (H : V β p.AddGroupFilterBasis.sets), V β (fun y : E => x β’ y) β»ΒΉ' U :=
by
@@ -197,6 +216,7 @@ theorem basisSets_smul_left (x : π) (U : Set E) (hU : U β p.basis_sets) :
simp only [not_ne_iff.mp h, subset_def, mem_ball_zero, hr, mem_univ, map_zero, imp_true_iff,
preimage_const_of_mem, zero_smul]
#align seminorm_family.basis_sets_smul_left SeminormFamily.basisSets_smul_left
+-/
#print SeminormFamily.moduleFilterBasis /-
/-- The `module_filter_basis` induced by the filter basis `seminorm_basis_zero`. -/
@@ -209,6 +229,7 @@ protected def moduleFilterBasis : ModuleFilterBasis π E
#align seminorm_family.module_filter_basis SeminormFamily.moduleFilterBasis
-/
+#print SeminormFamily.filter_eq_iInf /-
theorem filter_eq_iInf (p : SeminormFamily π E ΞΉ) :
p.ModuleFilterBasis.toFilterBasis.filterβ = β¨
i, (π 0).comap (p i) :=
by
@@ -229,6 +250,7 @@ theorem filter_eq_iInf (p : SeminormFamily π E ΞΉ) :
β¨Metric.ball 0 r, Metric.ball_mem_nhds 0 hr,
Eq.subset (p i).ball_zero_eq_preimage_ball.symmβ©
#align seminorm_family.filter_eq_infi SeminormFamily.filter_eq_iInf
+-/
end SeminormFamily
@@ -252,12 +274,15 @@ def IsBounded (p : ΞΉ β Seminorm π E) (q : ΞΉ' β Seminorm πβ F) (f :
#align seminorm.is_bounded Seminorm.IsBounded
-/
+#print Seminorm.isBounded_const /-
theorem isBounded_const (ΞΉ' : Type _) [Nonempty ΞΉ'] {p : ΞΉ β Seminorm π E} {q : Seminorm πβ F}
(f : E βββ[Οββ] F) :
IsBounded p (fun _ : ΞΉ' => q) f β β (s : Finset ΞΉ) (C : ββ₯0), q.comp f β€ C β’ s.sup p := by
simp only [is_bounded, forall_const]
#align seminorm.is_bounded_const Seminorm.isBounded_const
+-/
+#print Seminorm.const_isBounded /-
theorem const_isBounded (ΞΉ : Type _) [Nonempty ΞΉ] {p : Seminorm π E} {q : ΞΉ' β Seminorm πβ F}
(f : E βββ[Οββ] F) : IsBounded (fun _ : ΞΉ => p) q f β β i, β C : ββ₯0, (q i).comp f β€ C β’ p :=
by
@@ -267,7 +292,9 @@ theorem const_isBounded (ΞΉ : Type _) [Nonempty ΞΉ] {p : Seminorm π E} {q :
use {Classical.arbitrary ΞΉ}
simp only [h, Finset.sup_singleton]
#align seminorm.const_is_bounded Seminorm.const_isBounded
+-/
+#print Seminorm.isBounded_sup /-
theorem isBounded_sup {p : ΞΉ β Seminorm π E} {q : ΞΉ' β Seminorm πβ F} {f : E βββ[Οββ] F}
(hf : IsBounded p q f) (s' : Finset ΞΉ') :
β (C : ββ₯0) (s : Finset ΞΉ), (s'.sup q).comp f β€ C β’ s.sup p := by
@@ -287,6 +314,7 @@ theorem isBounded_sup {p : ΞΉ β Seminorm π E} {q : ΞΉ' β Seminorm πβ
rw [Finset.sum_const, smul_assoc]
exact le_rfl
#align seminorm.is_bounded_sup Seminorm.isBounded_sup
+-/
end Seminorm
@@ -303,28 +331,35 @@ structure WithSeminorms (p : SeminormFamily π E ΞΉ) [t : TopologicalSpace E]
#align with_seminorms WithSeminorms
-/
+#print WithSeminorms.withSeminorms_eq /-
theorem WithSeminorms.withSeminorms_eq {p : SeminormFamily π E ΞΉ} [t : TopologicalSpace E]
(hp : WithSeminorms p) : t = p.ModuleFilterBasis.topology :=
hp.1
#align with_seminorms.with_seminorms_eq WithSeminorms.withSeminorms_eq
+-/
variable [TopologicalSpace E]
variable {p : SeminormFamily π E ΞΉ}
+#print WithSeminorms.topologicalAddGroup /-
theorem WithSeminorms.topologicalAddGroup (hp : WithSeminorms p) : TopologicalAddGroup E :=
by
rw [hp.with_seminorms_eq]
exact AddGroupFilterBasis.isTopologicalAddGroup _
#align with_seminorms.topological_add_group WithSeminorms.topologicalAddGroup
+-/
+#print WithSeminorms.hasBasis /-
theorem WithSeminorms.hasBasis (hp : WithSeminorms p) :
(π (0 : E)).HasBasis (fun s : Set E => s β p.basis_sets) id :=
by
rw [congr_fun (congr_arg (@nhds E) hp.1) 0]
exact AddGroupFilterBasis.nhds_zero_hasBasis _
#align with_seminorms.has_basis WithSeminorms.hasBasis
+-/
+#print WithSeminorms.hasBasis_zero_ball /-
theorem WithSeminorms.hasBasis_zero_ball (hp : WithSeminorms p) :
(π (0 : E)).HasBasis (fun sr : Finset ΞΉ Γ β => 0 < sr.2) fun sr => (sr.1.sup p).ball 0 sr.2 :=
by
@@ -336,7 +371,9 @@ theorem WithSeminorms.hasBasis_zero_ball (hp : WithSeminorms p) :
Β· rintro β¨s, r, hr, hVβ©
exact β¨_, β¨s, r, hr, rflβ©, hVβ©
#align with_seminorms.has_basis_zero_ball WithSeminorms.hasBasis_zero_ball
+-/
+#print WithSeminorms.hasBasis_ball /-
theorem WithSeminorms.hasBasis_ball (hp : WithSeminorms p) {x : E} :
(π (x : E)).HasBasis (fun sr : Finset ΞΉ Γ β => 0 < sr.2) fun sr => (sr.1.sup p).ball x sr.2 :=
by
@@ -348,22 +385,28 @@ theorem WithSeminorms.hasBasis_ball (hp : WithSeminorms p) {x : E} :
Eq.symm (Seminorm.vadd_ball (sr.fst.sup p))
rwa [vadd_eq_add, add_zero] at this
#align with_seminorms.has_basis_ball WithSeminorms.hasBasis_ball
+-/
+#print WithSeminorms.mem_nhds_iff /-
/-- The `x`-neighbourhoods of a space whose topology is induced by a family of seminorms
are exactly the sets which contain seminorm balls around `x`.-/
theorem WithSeminorms.mem_nhds_iff (hp : WithSeminorms p) (x : E) (U : Set E) :
U β nhds x β β s : Finset ΞΉ, β r > 0, (s.sup p).ball x r β U := by
rw [hp.has_basis_ball.mem_iff, Prod.exists]
#align with_seminorms.mem_nhds_iff WithSeminorms.mem_nhds_iff
+-/
+#print WithSeminorms.isOpen_iff_mem_balls /-
/-- The open sets of a space whose topology is induced by a family of seminorms
are exactly the sets which contain seminorm balls around all of their points.-/
theorem WithSeminorms.isOpen_iff_mem_balls (hp : WithSeminorms p) (U : Set E) :
IsOpen U β β x β U, β s : Finset ΞΉ, β r > 0, (s.sup p).ball x r β U := by
simp_rw [β WithSeminorms.mem_nhds_iff hp _ U, isOpen_iff_mem_nhds]
#align with_seminorms.is_open_iff_mem_balls WithSeminorms.isOpen_iff_mem_balls
+-/
/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (x Β«expr β Β» 0) -/
+#print WithSeminorms.T1_of_separating /-
/- Note that through the following lemmas, one also immediately has that separating families
of seminorms induce Tβ and Tβ topologies by `topological_add_group.t2_space`
and `topological_add_group.t3_space` -/
@@ -379,7 +422,9 @@ theorem WithSeminorms.T1_of_separating (hp : WithSeminorms p)
refine' β¨{i}, p i x, by positivity, subset_compl_singleton_iff.mpr _β©
rw [Finset.sup_singleton, mem_ball, zero_sub, map_neg_eq_map, not_lt]
#align with_seminorms.t1_of_separating WithSeminorms.T1_of_separating
+-/
+#print WithSeminorms.separating_of_T1 /-
/-- A family of seminorms inducing a Tβ topology is separating. -/
theorem WithSeminorms.separating_of_T1 [T1Space E] (hp : WithSeminorms p) (x : E) (hx : x β 0) :
β i, p i x β 0 := by
@@ -390,8 +435,10 @@ theorem WithSeminorms.separating_of_T1 [T1Space E] (hp : WithSeminorms p) (x : E
rintro β¨s, rβ© (hr : 0 < r)
simp only [ball_finset_sup_eq_Inter _ _ _ hr, mem_Interβ, mem_ball_zero, h, hr, forall_true_iff]
#align with_seminorms.separating_of_t1 WithSeminorms.separating_of_T1
+-/
/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (x Β«expr β Β» 0) -/
+#print WithSeminorms.separating_iff_T1 /-
/-- A family of seminorms is separating iff it induces a Tβ topology. -/
theorem WithSeminorms.separating_iff_T1 (hp : WithSeminorms p) :
(β (x) (_ : x β 0), β i, p i x β 0) β T1Space E :=
@@ -400,6 +447,7 @@ theorem WithSeminorms.separating_iff_T1 (hp : WithSeminorms p) :
intro
exact WithSeminorms.separating_of_T1 hp
#align with_seminorms.separating_iff_t1 WithSeminorms.separating_iff_T1
+-/
end Topology
@@ -409,6 +457,7 @@ variable [NormedField π] [AddCommGroup E] [Module π E] [Nonempty ΞΉ] [Topo
variable {p : SeminormFamily π E ΞΉ}
+#print WithSeminorms.tendsto_nhds' /-
/-- Convergence along filters for `with_seminorms`.
Variant with `finset.sup`. -/
@@ -416,7 +465,9 @@ theorem WithSeminorms.tendsto_nhds' (hp : WithSeminorms p) (u : F β E) {f : Fi
Filter.Tendsto u f (π yβ) β β (s : Finset ΞΉ) (Ξ΅), 0 < Ξ΅ β βαΆ x in f, s.sup p (u x - yβ) < Ξ΅ :=
by simp [hp.has_basis_ball.tendsto_right_iff]
#align with_seminorms.tendsto_nhds' WithSeminorms.tendsto_nhds'
+-/
+#print WithSeminorms.tendsto_nhds /-
/-- Convergence along filters for `with_seminorms`. -/
theorem WithSeminorms.tendsto_nhds (hp : WithSeminorms p) (u : F β E) {f : Filter F} (yβ : E) :
Filter.Tendsto u f (π yβ) β β i Ξ΅, 0 < Ξ΅ β βαΆ x in f, p i (u x - yβ) < Ξ΅ :=
@@ -426,9 +477,11 @@ theorem WithSeminorms.tendsto_nhds (hp : WithSeminorms p) (u : F β E) {f : Fil
β¨fun h i => by simpa only [Finset.sup_singleton] using h {i}, fun h s Ξ΅ hΞ΅ =>
(s.eventually_all.2 fun i _ => h i Ξ΅ hΞ΅).mono fun _ => finset_sup_apply_lt hΞ΅β©
#align with_seminorms.tendsto_nhds WithSeminorms.tendsto_nhds
+-/
variable [SemilatticeSup F] [Nonempty F]
+#print WithSeminorms.tendsto_nhds_atTop /-
/-- Limit `β β` for `with_seminorms`. -/
theorem WithSeminorms.tendsto_nhds_atTop (hp : WithSeminorms p) (u : F β E) (yβ : E) :
Filter.Tendsto u Filter.atTop (π yβ) β β i Ξ΅, 0 < Ξ΅ β β xβ, β x, xβ β€ x β p i (u x - yβ) < Ξ΅ :=
@@ -436,6 +489,7 @@ theorem WithSeminorms.tendsto_nhds_atTop (hp : WithSeminorms p) (u : F β E) (y
rw [hp.tendsto_nhds u yβ]
exact forallβ_congr fun _ _ _ => Filter.eventually_atTop
#align with_seminorms.tendsto_nhds_at_top WithSeminorms.tendsto_nhds_atTop
+-/
end Tendsto
@@ -447,8 +501,7 @@ variable [t : TopologicalSpace E] [TopologicalAddGroup E]
variable [Nonempty ΞΉ]
-include t
-
+#print SeminormFamily.withSeminorms_of_nhds /-
theorem SeminormFamily.withSeminorms_of_nhds (p : SeminormFamily π E ΞΉ)
(h : π (0 : E) = p.ModuleFilterBasis.toFilterBasis.filterβ) : WithSeminorms p :=
by
@@ -457,13 +510,17 @@ theorem SeminormFamily.withSeminorms_of_nhds (p : SeminormFamily π E ΞΉ)
rw [AddGroupFilterBasis.nhds_zero_eq]
exact h
#align seminorm_family.with_seminorms_of_nhds SeminormFamily.withSeminorms_of_nhds
+-/
+#print SeminormFamily.withSeminorms_of_hasBasis /-
theorem SeminormFamily.withSeminorms_of_hasBasis (p : SeminormFamily π E ΞΉ)
(h : (π (0 : E)).HasBasis (fun s : Set E => s β p.basis_sets) id) : WithSeminorms p :=
p.withSeminorms_of_nhds <|
Filter.HasBasis.eq_of_same_basis h p.AddGroupFilterBasis.toFilterBasis.HasBasis
#align seminorm_family.with_seminorms_of_has_basis SeminormFamily.withSeminorms_of_hasBasis
+-/
+#print SeminormFamily.withSeminorms_iff_nhds_eq_iInf /-
theorem SeminormFamily.withSeminorms_iff_nhds_eq_iInf (p : SeminormFamily π E ΞΉ) :
WithSeminorms p β (π 0 : Filter E) = β¨
i, (π 0).comap (p i) :=
by
@@ -472,7 +529,9 @@ theorem SeminormFamily.withSeminorms_iff_nhds_eq_iInf (p : SeminormFamily π E
rw [h.topology_eq_with_seminorms]
exact AddGroupFilterBasis.nhds_zero_eq _
#align seminorm_family.with_seminorms_iff_nhds_eq_infi SeminormFamily.withSeminorms_iff_nhds_eq_iInf
+-/
+#print WithSeminorms.continuous_seminorm /-
theorem WithSeminorms.continuous_seminorm [NontriviallyNormedField π] [Module π E]
[ContinuousConstSMul π E] {p : SeminormFamily π E ΞΉ} (hp : WithSeminorms p) (i : ΞΉ) :
Continuous (p i) := by
@@ -480,8 +539,10 @@ theorem WithSeminorms.continuous_seminorm [NontriviallyNormedField π] [Module
rw [p.with_seminorms_iff_nhds_eq_infi.mp hp, ball_zero_eq_preimage_ball]
exact Filter.mem_iInf_of_mem i (Filter.preimage_mem_comap <| Metric.ball_mem_nhds _ one_pos)
#align with_seminorms.continuous_seminorm WithSeminorms.continuous_seminorm
+-/
/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `congrm #[[expr Β«expr = Β»(_, Β«exprβ¨
, Β»((i), _))]] -/
+#print SeminormFamily.withSeminorms_iff_topologicalSpace_eq_iInf /-
/-- The topology induced by a family of seminorms is exactly the infimum of the ones induced by
each seminorm individually. We express this as a characterization of `with_seminorms p`. -/
theorem SeminormFamily.withSeminorms_iff_topologicalSpace_eq_iInf (p : SeminormFamily π E ΞΉ) :
@@ -497,10 +558,10 @@ theorem SeminormFamily.withSeminorms_iff_topologicalSpace_eq_iInf (p : SeminormF
exact @comap_norm_nhds_zero _ (p i).toAddGroupSeminorm.toSeminormedAddGroup
all_goals infer_instance
#align seminorm_family.with_seminorms_iff_topological_space_eq_infi SeminormFamily.withSeminorms_iff_topologicalSpace_eq_iInf
-
-omit t
+-/
/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `congrm #[[expr Β«expr = Β»(_, Β«exprβ¨
, Β»((i), _))]] -/
+#print SeminormFamily.withSeminorms_iff_uniformSpace_eq_iInf /-
/-- The uniform structure induced by a family of seminorms is exactly the infimum of the ones
induced by each seminorm individually. We express this as a characterization of
`with_seminorms p`. -/
@@ -516,11 +577,13 @@ theorem SeminormFamily.withSeminorms_iff_uniformSpace_eq_iInf [u : UniformSpace
exact @comap_norm_nhds_zero _ (p i).toAddGroupSeminorm.toSeminormedAddGroup
all_goals infer_instance
#align seminorm_family.with_seminorms_iff_uniform_space_eq_infi SeminormFamily.withSeminorms_iff_uniformSpace_eq_iInf
+-/
end TopologicalAddGroup
section NormedSpace
+#print norm_withSeminorms /-
/-- The topology of a `normed_space π E` is induced by the seminorm `norm_seminorm π E`. -/
theorem norm_withSeminorms (π E) [NormedField π] [SeminormedAddCommGroup E] [NormedSpace π E] :
WithSeminorms fun _ : Fin 1 => normSeminorm π E :=
@@ -543,6 +606,7 @@ theorem norm_withSeminorms (π E) [NormedField π] [SeminormedAddCommGroup E
rw [finset.not_nonempty_iff_eq_empty.mp h, Finset.sup_empty, ball_bot _ hr]
exact Set.subset_univ _
#align norm_with_seminorms norm_withSeminorms
+-/
end NormedSpace
@@ -554,6 +618,7 @@ variable {p : SeminormFamily π E ΞΉ}
variable [TopologicalSpace E]
+#print WithSeminorms.isVonNBounded_iff_finset_seminorm_bounded /-
theorem WithSeminorms.isVonNBounded_iff_finset_seminorm_bounded {s : Set E} (hp : WithSeminorms p) :
Bornology.IsVonNBounded π s β β I : Finset ΞΉ, β (r : _) (hr : 0 < r), β x β s, I.sup p x < r :=
by
@@ -578,14 +643,18 @@ theorem WithSeminorms.isVonNBounded_iff_finset_seminorm_bounded {s : Set E} (hp
refine' Absorbs.mono_right _ h'
exact (Finset.sup I p).ball_zero_absorbs_ball_zero hr
#align with_seminorms.is_vonN_bounded_iff_finset_seminorm_bounded WithSeminorms.isVonNBounded_iff_finset_seminorm_bounded
+-/
+#print WithSeminorms.image_isVonNBounded_iff_finset_seminorm_bounded /-
theorem WithSeminorms.image_isVonNBounded_iff_finset_seminorm_bounded (f : G β E) {s : Set G}
(hp : WithSeminorms p) :
Bornology.IsVonNBounded π (f '' s) β
β I : Finset ΞΉ, β (r : _) (hr : 0 < r), β x β s, I.sup p (f x) < r :=
by simp_rw [hp.is_vonN_bounded_iff_finset_seminorm_bounded, Set.ball_image_iff]
#align with_seminorms.image_is_vonN_bounded_iff_finset_seminorm_bounded WithSeminorms.image_isVonNBounded_iff_finset_seminorm_bounded
+-/
+#print WithSeminorms.isVonNBounded_iff_seminorm_bounded /-
theorem WithSeminorms.isVonNBounded_iff_seminorm_bounded {s : Set E} (hp : WithSeminorms p) :
Bornology.IsVonNBounded π s β β i : ΞΉ, β (r : _) (hr : 0 < r), β x β s, p i x < r :=
by
@@ -607,12 +676,15 @@ theorem WithSeminorms.isVonNBounded_iff_seminorm_bounded {s : Set E} (hp : WithS
exists_prop]
exact β¨1, zero_lt_one, fun _ _ => zero_lt_oneβ©
#align with_seminorms.is_vonN_bounded_iff_seminorm_bounded WithSeminorms.isVonNBounded_iff_seminorm_bounded
+-/
+#print WithSeminorms.image_isVonNBounded_iff_seminorm_bounded /-
theorem WithSeminorms.image_isVonNBounded_iff_seminorm_bounded (f : G β E) {s : Set G}
(hp : WithSeminorms p) :
Bornology.IsVonNBounded π (f '' s) β β i : ΞΉ, β (r : _) (hr : 0 < r), β x β s, p i (f x) < r :=
by simp_rw [hp.is_vonN_bounded_iff_seminorm_bounded, Set.ball_image_iff]
#align with_seminorms.image_is_vonN_bounded_iff_seminorm_bounded WithSeminorms.image_isVonNBounded_iff_seminorm_bounded
+-/
end NontriviallyNormedField
@@ -634,6 +706,7 @@ variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [Nonempty ΞΉ] [Nonempty ΞΉ']
+#print Seminorm.continuous_of_continuous_comp /-
theorem continuous_of_continuous_comp {q : SeminormFamily πβ F ΞΉ'} [TopologicalSpace E]
[TopologicalAddGroup E] [TopologicalSpace F] [TopologicalAddGroup F] (hq : WithSeminorms q)
(f : E βββ[Οββ] F) (hf : β i, Continuous ((q i).comp f)) : Continuous f :=
@@ -645,13 +718,17 @@ theorem continuous_of_continuous_comp {q : SeminormFamily πβ F ΞΉ'} [Topolo
convert (hf i).ContinuousAt
exact (map_zero _).symm
#align seminorm.continuous_of_continuous_comp Seminorm.continuous_of_continuous_comp
+-/
+#print Seminorm.continuous_iff_continuous_comp /-
theorem continuous_iff_continuous_comp {q : SeminormFamily πβ F ΞΉ'} [TopologicalSpace E]
[TopologicalAddGroup E] [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousConstSMul πβ F]
(hq : WithSeminorms q) (f : E βββ[Οββ] F) : Continuous f β β i, Continuous ((q i).comp f) :=
β¨fun h i => Continuous.comp (hq.continuous_seminorm i) h, continuous_of_continuous_comp hq fβ©
#align seminorm.continuous_iff_continuous_comp Seminorm.continuous_iff_continuous_comp
+-/
+#print Seminorm.continuous_from_bounded /-
theorem continuous_from_bounded {p : SeminormFamily π E ΞΉ} {q : SeminormFamily πβ F ΞΉ'}
[TopologicalSpace E] [TopologicalAddGroup E] (hp : WithSeminorms p) [TopologicalSpace F]
[TopologicalAddGroup F] (hq : WithSeminorms q) (f : E βββ[Οββ] F)
@@ -671,7 +748,9 @@ theorem continuous_from_bounded {p : SeminormFamily π E ΞΉ} {q : SeminormFami
refine' ball_antitone (smul_le_smul le_rfl _)
simp only [le_add_iff_nonneg_right, zero_le']
#align seminorm.continuous_from_bounded Seminorm.continuous_from_bounded
+-/
+#print Seminorm.cont_withSeminorms_normedSpace /-
theorem cont_withSeminorms_normedSpace (F) [SeminormedAddCommGroup F] [NormedSpace πβ F]
[UniformSpace E] [UniformAddGroup E] {p : ΞΉ β Seminorm π E} (hp : WithSeminorms p)
(f : E βββ[Οββ] F) (hf : β (s : Finset ΞΉ) (C : ββ₯0), (normSeminorm πβ F).comp f β€ C β’ s.sup p) :
@@ -679,7 +758,9 @@ theorem cont_withSeminorms_normedSpace (F) [SeminormedAddCommGroup F] [NormedSpa
rw [β Seminorm.isBounded_const (Fin 1)] at hf
exact continuous_from_bounded hp (norm_withSeminorms πβ F) f hf
#align seminorm.cont_with_seminorms_normed_space Seminorm.cont_withSeminorms_normedSpace
+-/
+#print Seminorm.cont_normedSpace_to_withSeminorms /-
theorem cont_normedSpace_to_withSeminorms (E) [SeminormedAddCommGroup E] [NormedSpace π E]
[UniformSpace F] [UniformAddGroup F] {q : ΞΉ β Seminorm πβ F} (hq : WithSeminorms q)
(f : E βββ[Οββ] F) (hf : β i : ΞΉ, β C : ββ₯0, (q i).comp f β€ C β’ normSeminorm π E) :
@@ -687,6 +768,7 @@ theorem cont_normedSpace_to_withSeminorms (E) [SeminormedAddCommGroup E] [Normed
rw [β Seminorm.const_isBounded (Fin 1)] at hf
exact continuous_from_bounded (norm_withSeminorms π E) hq f hf
#align seminorm.cont_normed_space_to_with_seminorms Seminorm.cont_normedSpace_to_withSeminorms
+-/
end Seminorm
@@ -699,6 +781,7 @@ open LocallyConvexSpace
variable [Nonempty ΞΉ] [NormedField π] [NormedSpace β π] [AddCommGroup E] [Module π E] [Module β E]
[IsScalarTower β π E] [TopologicalSpace E] [TopologicalAddGroup E]
+#print WithSeminorms.toLocallyConvexSpace /-
theorem WithSeminorms.toLocallyConvexSpace {p : SeminormFamily π E ΞΉ} (hp : WithSeminorms p) :
LocallyConvexSpace β E :=
by
@@ -711,6 +794,7 @@ theorem WithSeminorms.toLocallyConvexSpace {p : SeminormFamily π E ΞΉ} (hp :
rcases hs with β¨I, r, hr, rflβ©
exact convex_ball _ _ _
#align with_seminorms.to_locally_convex_space WithSeminorms.toLocallyConvexSpace
+-/
end LocallyConvexSpace
@@ -718,12 +802,14 @@ section NormedSpace
variable (π) [NormedField π] [NormedSpace β π] [SeminormedAddCommGroup E]
+#print NormedSpace.toLocallyConvexSpace' /-
/-- Not an instance since `π` can't be inferred. See `normed_space.to_locally_convex_space` for a
slightly weaker instance version. -/
theorem NormedSpace.toLocallyConvexSpace' [NormedSpace π E] [Module β E] [IsScalarTower β π E] :
LocallyConvexSpace β E :=
(norm_withSeminorms π E).toLocallyConvexSpace
#align normed_space.to_locally_convex_space' NormedSpace.toLocallyConvexSpace'
+-/
#print NormedSpace.toLocallyConvexSpace /-
/-- See `normed_space.to_locally_convex_space'` for a slightly stronger version which is not an
@@ -750,11 +836,14 @@ def SeminormFamily.comp (q : SeminormFamily πβ F ΞΉ) (f : E βββ[Οβ
#align seminorm_family.comp SeminormFamily.comp
-/
+#print SeminormFamily.comp_apply /-
theorem SeminormFamily.comp_apply (q : SeminormFamily πβ F ΞΉ) (i : ΞΉ) (f : E βββ[Οββ] F) :
q.comp f i = (q i).comp f :=
rfl
#align seminorm_family.comp_apply SeminormFamily.comp_apply
+-/
+#print SeminormFamily.finset_sup_comp /-
theorem SeminormFamily.finset_sup_comp (q : SeminormFamily πβ F ΞΉ) (s : Finset ΞΉ)
(f : E βββ[Οββ] F) : (s.sup q).comp f = s.sup (q.comp f) :=
by
@@ -762,9 +851,11 @@ theorem SeminormFamily.finset_sup_comp (q : SeminormFamily πβ F ΞΉ) (s : Fi
rw [Seminorm.comp_apply, Seminorm.finset_sup_apply, Seminorm.finset_sup_apply]
rfl
#align seminorm_family.finset_sup_comp SeminormFamily.finset_sup_comp
+-/
variable [TopologicalSpace F] [TopologicalAddGroup F]
+#print LinearMap.withSeminorms_induced /-
theorem LinearMap.withSeminorms_induced [hΞΉ : Nonempty ΞΉ] {q : SeminormFamily πβ F ΞΉ}
(hq : WithSeminorms q) (f : E βββ[Οββ] F) :
@WithSeminorms π E ΞΉ _ _ _ _ (q.comp f) (induced f inferInstance) :=
@@ -776,13 +867,16 @@ theorem LinearMap.withSeminorms_induced [hΞΉ : Nonempty ΞΉ] {q : SeminormFamily
refine' iInf_congr fun i => _
exact Filter.comap_comap
#align linear_map.with_seminorms_induced LinearMap.withSeminorms_induced
+-/
+#print Inducing.withSeminorms /-
theorem Inducing.withSeminorms [hΞΉ : Nonempty ΞΉ] {q : SeminormFamily πβ F ΞΉ} (hq : WithSeminorms q)
[TopologicalSpace E] {f : E βββ[Οββ] F} (hf : Inducing f) : WithSeminorms (q.comp f) :=
by
rw [hf.induced]
exact f.with_seminorms_induced hq
#align inducing.with_seminorms Inducing.withSeminorms
+-/
end TopologicalConstructions
@@ -794,6 +888,7 @@ variable {p : SeminormFamily π E ΞΉ}
variable [UniformSpace E] [UniformAddGroup E]
+#print WithSeminorms.first_countable /-
/-- If the topology of a space is induced by a countable family of seminorms, then the topology
is first countable. -/
theorem WithSeminorms.first_countable (hp : WithSeminorms p) :
@@ -806,6 +901,7 @@ theorem WithSeminorms.first_countable (hp : WithSeminorms p) :
haveI : (uniformity E).IsCountablyGenerated := UniformAddGroup.uniformity_countably_generated
exact UniformSpace.firstCountableTopology E
#align with_seminorms.first_countable WithSeminorms.first_countable
+-/
end TopologicalProperties
mathlib commit https://github.com/leanprover-community/mathlib/commit/31c24aa72e7b3e5ed97a8412470e904f82b81004
@@ -363,7 +363,7 @@ theorem WithSeminorms.isOpen_iff_mem_balls (hp : WithSeminorms p) (U : Set E) :
simp_rw [β WithSeminorms.mem_nhds_iff hp _ U, isOpen_iff_mem_nhds]
#align with_seminorms.is_open_iff_mem_balls WithSeminorms.isOpen_iff_mem_balls
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (x Β«expr β Β» 0) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (x Β«expr β Β» 0) -/
/- Note that through the following lemmas, one also immediately has that separating families
of seminorms induce Tβ and Tβ topologies by `topological_add_group.t2_space`
and `topological_add_group.t3_space` -/
@@ -391,7 +391,7 @@ theorem WithSeminorms.separating_of_T1 [T1Space E] (hp : WithSeminorms p) (x : E
simp only [ball_finset_sup_eq_Inter _ _ _ hr, mem_Interβ, mem_ball_zero, h, hr, forall_true_iff]
#align with_seminorms.separating_of_t1 WithSeminorms.separating_of_T1
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (x Β«expr β Β» 0) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (x Β«expr β Β» 0) -/
/-- A family of seminorms is separating iff it induces a Tβ topology. -/
theorem WithSeminorms.separating_iff_T1 (hp : WithSeminorms p) :
(β (x) (_ : x β 0), β i, p i x β 0) β T1Space E :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/5f25c089cb34db4db112556f23c50d12da81b297
@@ -111,18 +111,18 @@ theorem basisSets_nonempty [Nonempty ΞΉ] : p.basis_sets.Nonempty :=
theorem basisSets_intersect (U V : Set E) (hU : U β p.basis_sets) (hV : V β p.basis_sets) :
β (z : Set E) (H : z β p.basis_sets), z β U β© V := by
classical
- rcases p.basis_sets_iff.mp hU with β¨s, rβ, hrβ, hUβ©
- rcases p.basis_sets_iff.mp hV with β¨t, rβ, hrβ, hVβ©
- use ((s βͺ t).sup p).ball 0 (min rβ rβ)
- refine' β¨p.basis_sets_mem (s βͺ t) (lt_min_iff.mpr β¨hrβ, hrββ©), _β©
- rw [hU, hV, ball_finset_sup_eq_Inter _ _ _ (lt_min_iff.mpr β¨hrβ, hrββ©),
- ball_finset_sup_eq_Inter _ _ _ hrβ, ball_finset_sup_eq_Inter _ _ _ hrβ]
- exact
- Set.subset_inter
- (Set.iInterβ_mono' fun i hi =>
- β¨i, Finset.subset_union_left _ _ hi, ball_mono <| min_le_left _ _β©)
- (Set.iInterβ_mono' fun i hi =>
- β¨i, Finset.subset_union_right _ _ hi, ball_mono <| min_le_right _ _β©)
+ rcases p.basis_sets_iff.mp hU with β¨s, rβ, hrβ, hUβ©
+ rcases p.basis_sets_iff.mp hV with β¨t, rβ, hrβ, hVβ©
+ use ((s βͺ t).sup p).ball 0 (min rβ rβ)
+ refine' β¨p.basis_sets_mem (s βͺ t) (lt_min_iff.mpr β¨hrβ, hrββ©), _β©
+ rw [hU, hV, ball_finset_sup_eq_Inter _ _ _ (lt_min_iff.mpr β¨hrβ, hrββ©),
+ ball_finset_sup_eq_Inter _ _ _ hrβ, ball_finset_sup_eq_Inter _ _ _ hrβ]
+ exact
+ Set.subset_inter
+ (Set.iInterβ_mono' fun i hi =>
+ β¨i, Finset.subset_union_left _ _ hi, ball_mono <| min_le_left _ _β©)
+ (Set.iInterβ_mono' fun i hi =>
+ β¨i, Finset.subset_union_right _ _ hi, ball_mono <| min_le_right _ _β©)
#align seminorm_family.basis_sets_intersect SeminormFamily.basisSets_intersect
theorem basisSets_zero (U) (hU : U β p.basis_sets) : (0 : E) β U :=
@@ -272,20 +272,20 @@ theorem isBounded_sup {p : ΞΉ β Seminorm π E} {q : ΞΉ' β Seminorm πβ
(hf : IsBounded p q f) (s' : Finset ΞΉ') :
β (C : ββ₯0) (s : Finset ΞΉ), (s'.sup q).comp f β€ C β’ s.sup p := by
classical
- obtain rfl | hs' := s'.eq_empty_or_nonempty
- Β· exact β¨1, β
, by simp [Seminorm.bot_eq_zero]β©
- choose fβ fC hf using hf
- use s'.card β’ s'.sup fC, Finset.biUnion s' fβ
- have hs : β i : ΞΉ', i β s' β (q i).comp f β€ s'.sup fC β’ (Finset.biUnion s' fβ).sup p :=
- by
- intro i hi
- refine' (hf i).trans (smul_le_smul _ (Finset.le_sup hi))
- exact Finset.sup_mono (Finset.subset_biUnion_of_mem fβ hi)
- refine' (comp_mono f (finset_sup_le_sum q s')).trans _
- simp_rw [β pullback_apply, AddMonoidHom.map_sum, pullback_apply]
- refine' (Finset.sum_le_sum hs).trans _
- rw [Finset.sum_const, smul_assoc]
- exact le_rfl
+ obtain rfl | hs' := s'.eq_empty_or_nonempty
+ Β· exact β¨1, β
, by simp [Seminorm.bot_eq_zero]β©
+ choose fβ fC hf using hf
+ use s'.card β’ s'.sup fC, Finset.biUnion s' fβ
+ have hs : β i : ΞΉ', i β s' β (q i).comp f β€ s'.sup fC β’ (Finset.biUnion s' fβ).sup p :=
+ by
+ intro i hi
+ refine' (hf i).trans (smul_le_smul _ (Finset.le_sup hi))
+ exact Finset.sup_mono (Finset.subset_biUnion_of_mem fβ hi)
+ refine' (comp_mono f (finset_sup_le_sum q s')).trans _
+ simp_rw [β pullback_apply, AddMonoidHom.map_sum, pullback_apply]
+ refine' (Finset.sum_le_sum hs).trans _
+ rw [Finset.sum_const, smul_assoc]
+ exact le_rfl
#align seminorm.is_bounded_sup Seminorm.isBounded_sup
end Seminorm
@@ -642,7 +642,7 @@ theorem continuous_of_continuous_comp {q : SeminormFamily πβ F ΞΉ'} [Topolo
simp_rw [ContinuousAt, f.map_zero, q.with_seminorms_iff_nhds_eq_infi.mp hq, Filter.tendsto_iInf,
Filter.tendsto_comap_iff]
intro i
- convert(hf i).ContinuousAt
+ convert (hf i).ContinuousAt
exact (map_zero _).symm
#align seminorm.continuous_of_continuous_comp Seminorm.continuous_of_continuous_comp
mathlib commit https://github.com/leanprover-community/mathlib/commit/cca40788df1b8755d5baf17ab2f27dacc2e17acb
@@ -87,7 +87,7 @@ def basisSets (p : SeminormFamily π E ΞΉ) : Set (Set E) :=
variable (p : SeminormFamily π E ΞΉ)
theorem basisSets_iff {U : Set E} :
- U β p.basis_sets β β (i : Finset ΞΉ)(r : _)(hr : 0 < r), U = ball (i.sup p) 0 r := by
+ U β p.basis_sets β β (i : Finset ΞΉ) (r : _) (hr : 0 < r), U = ball (i.sup p) 0 r := by
simp only [basis_sets, mem_Union, mem_singleton_iff]
#align seminorm_family.basis_sets_iff SeminormFamily.basisSets_iff
@@ -109,7 +109,7 @@ theorem basisSets_nonempty [Nonempty ΞΉ] : p.basis_sets.Nonempty :=
-/
theorem basisSets_intersect (U V : Set E) (hU : U β p.basis_sets) (hV : V β p.basis_sets) :
- β (z : Set E)(H : z β p.basis_sets), z β U β© V := by
+ β (z : Set E) (H : z β p.basis_sets), z β U β© V := by
classical
rcases p.basis_sets_iff.mp hU with β¨s, rβ, hrβ, hUβ©
rcases p.basis_sets_iff.mp hV with β¨t, rβ, hrβ, hVβ©
@@ -133,7 +133,7 @@ theorem basisSets_zero (U) (hU : U β p.basis_sets) : (0 : E) β U :=
#align seminorm_family.basis_sets_zero SeminormFamily.basisSets_zero
theorem basisSets_add (U) (hU : U β p.basis_sets) :
- β (V : Set E)(H : V β p.basis_sets), V + V β U :=
+ β (V : Set E) (H : V β p.basis_sets), V + V β U :=
by
rcases p.basis_sets_iff.mp hU with β¨s, r, hr, hUβ©
use (s.sup p).ball 0 (r / 2)
@@ -143,7 +143,7 @@ theorem basisSets_add (U) (hU : U β p.basis_sets) :
#align seminorm_family.basis_sets_add SeminormFamily.basisSets_add
theorem basisSets_neg (U) (hU' : U β p.basis_sets) :
- β (V : Set E)(H : V β p.basis_sets), V β (fun x : E => -x) β»ΒΉ' U :=
+ β (V : Set E) (H : V β p.basis_sets), V β (fun x : E => -x) β»ΒΉ' U :=
by
rcases p.basis_sets_iff.mp hU' with β¨s, r, hr, hUβ©
rw [hU, neg_preimage, neg_ball (s.sup p), neg_zero]
@@ -175,7 +175,7 @@ theorem basisSets_smul_right (v : E) (U : Set E) (hU : U β p.basis_sets) :
variable [Nonempty ΞΉ]
theorem basisSets_smul (U) (hU : U β p.basis_sets) :
- β (V : Set π)(H : V β π (0 : π))(W : Set E)(H : W β p.AddGroupFilterBasis.sets), V β’ W β U :=
+ β (V : Set π) (H : V β π (0 : π)) (W : Set E) (H : W β p.AddGroupFilterBasis.sets), V β’ W β U :=
by
rcases p.basis_sets_iff.mp hU with β¨s, r, hr, hUβ©
refine' β¨Metric.ball 0 r.sqrt, Metric.ball_mem_nhds 0 (real.sqrt_pos.mpr hr), _β©
@@ -185,7 +185,7 @@ theorem basisSets_smul (U) (hU : U β p.basis_sets) :
#align seminorm_family.basis_sets_smul SeminormFamily.basisSets_smul
theorem basisSets_smul_left (x : π) (U : Set E) (hU : U β p.basis_sets) :
- β (V : Set E)(H : V β p.AddGroupFilterBasis.sets), V β (fun y : E => x β’ y) β»ΒΉ' U :=
+ β (V : Set E) (H : V β p.AddGroupFilterBasis.sets), V β (fun y : E => x β’ y) β»ΒΉ' U :=
by
rcases p.basis_sets_iff.mp hU with β¨s, r, hr, hUβ©
rw [hU]
@@ -254,7 +254,7 @@ def IsBounded (p : ΞΉ β Seminorm π E) (q : ΞΉ' β Seminorm πβ F) (f :
theorem isBounded_const (ΞΉ' : Type _) [Nonempty ΞΉ'] {p : ΞΉ β Seminorm π E} {q : Seminorm πβ F}
(f : E βββ[Οββ] F) :
- IsBounded p (fun _ : ΞΉ' => q) f β β (s : Finset ΞΉ)(C : ββ₯0), q.comp f β€ C β’ s.sup p := by
+ IsBounded p (fun _ : ΞΉ' => q) f β β (s : Finset ΞΉ) (C : ββ₯0), q.comp f β€ C β’ s.sup p := by
simp only [is_bounded, forall_const]
#align seminorm.is_bounded_const Seminorm.isBounded_const
@@ -270,7 +270,7 @@ theorem const_isBounded (ΞΉ : Type _) [Nonempty ΞΉ] {p : Seminorm π E} {q :
theorem isBounded_sup {p : ΞΉ β Seminorm π E} {q : ΞΉ' β Seminorm πβ F} {f : E βββ[Οββ] F}
(hf : IsBounded p q f) (s' : Finset ΞΉ') :
- β (C : ββ₯0)(s : Finset ΞΉ), (s'.sup q).comp f β€ C β’ s.sup p := by
+ β (C : ββ₯0) (s : Finset ΞΉ), (s'.sup q).comp f β€ C β’ s.sup p := by
classical
obtain rfl | hs' := s'.eq_empty_or_nonempty
Β· exact β¨1, β
, by simp [Seminorm.bot_eq_zero]β©
@@ -346,7 +346,7 @@ theorem WithSeminorms.hasBasis_ball (hp : WithSeminorms p) {x : E} :
ext sr : 1
have : (sr.fst.sup p).ball (x +α΅₯ 0) sr.snd = x +α΅₯ (sr.fst.sup p).ball 0 sr.snd :=
Eq.symm (Seminorm.vadd_ball (sr.fst.sup p))
- rwa [vadd_eq_add, add_zero] at this
+ rwa [vadd_eq_add, add_zero] at this
#align with_seminorms.has_basis_ball WithSeminorms.hasBasis_ball
/-- The `x`-neighbourhoods of a space whose topology is induced by a family of seminorms
@@ -555,17 +555,17 @@ variable {p : SeminormFamily π E ΞΉ}
variable [TopologicalSpace E]
theorem WithSeminorms.isVonNBounded_iff_finset_seminorm_bounded {s : Set E} (hp : WithSeminorms p) :
- Bornology.IsVonNBounded π s β β I : Finset ΞΉ, β (r : _)(hr : 0 < r), β x β s, I.sup p x < r :=
+ Bornology.IsVonNBounded π s β β I : Finset ΞΉ, β (r : _) (hr : 0 < r), β x β s, I.sup p x < r :=
by
rw [hp.has_basis.isVonNBounded_basis_iff]
constructor
Β· intro h I
- simp only [id.def] at h
+ simp only [id.def] at h
specialize h ((I.sup p).ball 0 1) (p.basis_sets_mem I zero_lt_one)
rcases h with β¨r, hr, hβ©
cases' NormedField.exists_lt_norm π r with a ha
specialize h a (le_of_lt ha)
- rw [Seminorm.smul_ball_zero (norm_pos_iff.1 <| hr.trans ha), mul_one] at h
+ rw [Seminorm.smul_ball_zero (norm_pos_iff.1 <| hr.trans ha), mul_one] at h
refine' β¨βaβ, lt_trans hr ha, _β©
intro x hx
specialize h hx
@@ -574,7 +574,7 @@ theorem WithSeminorms.isVonNBounded_iff_finset_seminorm_bounded {s : Set E} (hp
rcases p.basis_sets_iff.mp hs' with β¨I, r, hr, hs'β©
rw [id.def, hs']
rcases h I with β¨r', hr', h'β©
- simp_rw [β (I.sup p).mem_ball_zero] at h'
+ simp_rw [β (I.sup p).mem_ball_zero] at h'
refine' Absorbs.mono_right _ h'
exact (Finset.sup I p).ball_zero_absorbs_ball_zero hr
#align with_seminorms.is_vonN_bounded_iff_finset_seminorm_bounded WithSeminorms.isVonNBounded_iff_finset_seminorm_bounded
@@ -582,12 +582,12 @@ theorem WithSeminorms.isVonNBounded_iff_finset_seminorm_bounded {s : Set E} (hp
theorem WithSeminorms.image_isVonNBounded_iff_finset_seminorm_bounded (f : G β E) {s : Set G}
(hp : WithSeminorms p) :
Bornology.IsVonNBounded π (f '' s) β
- β I : Finset ΞΉ, β (r : _)(hr : 0 < r), β x β s, I.sup p (f x) < r :=
+ β I : Finset ΞΉ, β (r : _) (hr : 0 < r), β x β s, I.sup p (f x) < r :=
by simp_rw [hp.is_vonN_bounded_iff_finset_seminorm_bounded, Set.ball_image_iff]
#align with_seminorms.image_is_vonN_bounded_iff_finset_seminorm_bounded WithSeminorms.image_isVonNBounded_iff_finset_seminorm_bounded
theorem WithSeminorms.isVonNBounded_iff_seminorm_bounded {s : Set E} (hp : WithSeminorms p) :
- Bornology.IsVonNBounded π s β β i : ΞΉ, β (r : _)(hr : 0 < r), β x β s, p i x < r :=
+ Bornology.IsVonNBounded π s β β i : ΞΉ, β (r : _) (hr : 0 < r), β x β s, p i x < r :=
by
rw [hp.is_vonN_bounded_iff_finset_seminorm_bounded]
constructor
@@ -610,7 +610,7 @@ theorem WithSeminorms.isVonNBounded_iff_seminorm_bounded {s : Set E} (hp : WithS
theorem WithSeminorms.image_isVonNBounded_iff_seminorm_bounded (f : G β E) {s : Set G}
(hp : WithSeminorms p) :
- Bornology.IsVonNBounded π (f '' s) β β i : ΞΉ, β (r : _)(hr : 0 < r), β x β s, p i (f x) < r :=
+ Bornology.IsVonNBounded π (f '' s) β β i : ΞΉ, β (r : _) (hr : 0 < r), β x β s, p i (f x) < r :=
by simp_rw [hp.is_vonN_bounded_iff_seminorm_bounded, Set.ball_image_iff]
#align with_seminorms.image_is_vonN_bounded_iff_seminorm_bounded WithSeminorms.image_isVonNBounded_iff_seminorm_bounded
@@ -674,9 +674,9 @@ theorem continuous_from_bounded {p : SeminormFamily π E ΞΉ} {q : SeminormFami
theorem cont_withSeminorms_normedSpace (F) [SeminormedAddCommGroup F] [NormedSpace πβ F]
[UniformSpace E] [UniformAddGroup E] {p : ΞΉ β Seminorm π E} (hp : WithSeminorms p)
- (f : E βββ[Οββ] F) (hf : β (s : Finset ΞΉ)(C : ββ₯0), (normSeminorm πβ F).comp f β€ C β’ s.sup p) :
+ (f : E βββ[Οββ] F) (hf : β (s : Finset ΞΉ) (C : ββ₯0), (normSeminorm πβ F).comp f β€ C β’ s.sup p) :
Continuous f := by
- rw [β Seminorm.isBounded_const (Fin 1)] at hf
+ rw [β Seminorm.isBounded_const (Fin 1)] at hf
exact continuous_from_bounded hp (norm_withSeminorms πβ F) f hf
#align seminorm.cont_with_seminorms_normed_space Seminorm.cont_withSeminorms_normedSpace
@@ -684,7 +684,7 @@ theorem cont_normedSpace_to_withSeminorms (E) [SeminormedAddCommGroup E] [Normed
[UniformSpace F] [UniformAddGroup F] {q : ΞΉ β Seminorm πβ F} (hq : WithSeminorms q)
(f : E βββ[Οββ] F) (hf : β i : ΞΉ, β C : ββ₯0, (q i).comp f β€ C β’ normSeminorm π E) :
Continuous f := by
- rw [β Seminorm.const_isBounded (Fin 1)] at hf
+ rw [β Seminorm.const_isBounded (Fin 1)] at hf
exact continuous_from_bounded (norm_withSeminorms π E) hq f hf
#align seminorm.cont_normed_space_to_with_seminorms Seminorm.cont_normedSpace_to_withSeminorms
@@ -706,8 +706,8 @@ theorem WithSeminorms.toLocallyConvexSpace {p : SeminormFamily π E ΞΉ} (hp :
Β· rw [hp.1, AddGroupFilterBasis.nhds_eq _, AddGroupFilterBasis.N_zero]
exact FilterBasis.hasBasis _
Β· intro s hs
- change s β Set.iUnion _ at hs
- simp_rw [Set.mem_iUnion, Set.mem_singleton_iff] at hs
+ change s β Set.iUnion _ at hs
+ simp_rw [Set.mem_iUnion, Set.mem_singleton_iff] at hs
rcases hs with β¨I, r, hr, rflβ©
exact convex_ball _ _ _
#align with_seminorms.to_locally_convex_space WithSeminorms.toLocallyConvexSpace
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -56,7 +56,7 @@ seminorm, locally convex
open NormedField Set Seminorm TopologicalSpace
-open BigOperators NNReal Pointwise Topology
+open scoped BigOperators NNReal Pointwise Topology
variable {π πβ π πβ E F G ΞΉ ΞΉ' : Type _}
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -86,27 +86,15 @@ def basisSets (p : SeminormFamily π E ΞΉ) : Set (Set E) :=
variable (p : SeminormFamily π E ΞΉ)
-/- warning: seminorm_family.basis_sets_iff -> SeminormFamily.basisSets_iff is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align seminorm_family.basis_sets_iff SeminormFamily.basisSets_iffβ'. -/
theorem basisSets_iff {U : Set E} :
U β p.basis_sets β β (i : Finset ΞΉ)(r : _)(hr : 0 < r), U = ball (i.sup p) 0 r := by
simp only [basis_sets, mem_Union, mem_singleton_iff]
#align seminorm_family.basis_sets_iff SeminormFamily.basisSets_iff
-/- warning: seminorm_family.basis_sets_mem -> SeminormFamily.basisSets_mem is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align seminorm_family.basis_sets_mem SeminormFamily.basisSets_memβ'. -/
theorem basisSets_mem (i : Finset ΞΉ) {r : β} (hr : 0 < r) : (i.sup p).ball 0 r β p.basis_sets :=
(basisSets_iff _).mpr β¨i, _, hr, rflβ©
#align seminorm_family.basis_sets_mem SeminormFamily.basisSets_mem
-/- warning: seminorm_family.basis_sets_singleton_mem -> SeminormFamily.basisSets_singleton_mem is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] (p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3) (i : ΞΉ) {r : Real}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) -> (Membership.Mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.hasMem.{u2} (Set.{u2} E)) (Seminorm.ball.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) _inst_2 (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (p i) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2)))))))) r) (SeminormFamily.basisSets.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p))
-but is expected to have type
- forall {π : Type.{u2}} {E : Type.{u3}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u2} π] [_inst_2 : AddCommGroup.{u3} E] [_inst_3 : Module.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] (p : SeminormFamily.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3) (i : ΞΉ) {r : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (Membership.mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.instMembershipSet.{u3} (Set.{u3} E)) (Seminorm.ball.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))) _inst_2 (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3)))) (p i) (OfNat.ofNat.{u3} E 0 (Zero.toOfNat0.{u3} E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))))) r) (SeminormFamily.basisSets.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 p))
-Case conversion may be inaccurate. Consider using '#align seminorm_family.basis_sets_singleton_mem SeminormFamily.basisSets_singleton_memβ'. -/
theorem basisSets_singleton_mem (i : ΞΉ) {r : β} (hr : 0 < r) : (p i).ball 0 r β p.basis_sets :=
(basisSets_iff _).mpr β¨{i}, _, hr, by rw [Finset.sup_singleton]β©
#align seminorm_family.basis_sets_singleton_mem SeminormFamily.basisSets_singleton_mem
@@ -120,12 +108,6 @@ theorem basisSets_nonempty [Nonempty ΞΉ] : p.basis_sets.Nonempty :=
#align seminorm_family.basis_sets_nonempty SeminormFamily.basisSets_nonempty
-/
-/- warning: seminorm_family.basis_sets_intersect -> SeminormFamily.basisSets_intersect is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] (p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3) (U : Set.{u2} E) (V : Set.{u2} E), (Membership.Mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.hasMem.{u2} (Set.{u2} E)) U (SeminormFamily.basisSets.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) -> (Membership.Mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.hasMem.{u2} (Set.{u2} E)) V (SeminormFamily.basisSets.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) -> (Exists.{succ u2} (Set.{u2} E) (fun (z : Set.{u2} E) => Exists.{0} (Membership.Mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.hasMem.{u2} (Set.{u2} E)) z (SeminormFamily.basisSets.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) (fun (H : Membership.Mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.hasMem.{u2} (Set.{u2} E)) z (SeminormFamily.basisSets.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) => HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) z (Inter.inter.{u2} (Set.{u2} E) (Set.hasInter.{u2} E) U V))))
-but is expected to have type
- forall {π : Type.{u2}} {E : Type.{u3}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u2} π] [_inst_2 : AddCommGroup.{u3} E] [_inst_3 : Module.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] (p : SeminormFamily.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3) (U : Set.{u3} E) (V : Set.{u3} E), (Membership.mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.instMembershipSet.{u3} (Set.{u3} E)) U (SeminormFamily.basisSets.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) -> (Membership.mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.instMembershipSet.{u3} (Set.{u3} E)) V (SeminormFamily.basisSets.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) -> (Exists.{succ u3} (Set.{u3} E) (fun (z : Set.{u3} E) => And (Membership.mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.instMembershipSet.{u3} (Set.{u3} E)) z (SeminormFamily.basisSets.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) (HasSubset.Subset.{u3} (Set.{u3} E) (Set.instHasSubsetSet.{u3} E) z (Inter.inter.{u3} (Set.{u3} E) (Set.instInterSet.{u3} E) U V))))
-Case conversion may be inaccurate. Consider using '#align seminorm_family.basis_sets_intersect SeminormFamily.basisSets_intersectβ'. -/
theorem basisSets_intersect (U V : Set E) (hU : U β p.basis_sets) (hV : V β p.basis_sets) :
β (z : Set E)(H : z β p.basis_sets), z β U β© V := by
classical
@@ -143,12 +125,6 @@ theorem basisSets_intersect (U V : Set E) (hU : U β p.basis_sets) (hV : V β
β¨i, Finset.subset_union_right _ _ hi, ball_mono <| min_le_right _ _β©)
#align seminorm_family.basis_sets_intersect SeminormFamily.basisSets_intersect
-/- warning: seminorm_family.basis_sets_zero -> SeminormFamily.basisSets_zero is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] (p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3) (U : Set.{u2} E), (Membership.Mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.hasMem.{u2} (Set.{u2} E)) U (SeminormFamily.basisSets.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) -> (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2)))))))) U)
-but is expected to have type
- forall {π : Type.{u2}} {E : Type.{u3}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u2} π] [_inst_2 : AddCommGroup.{u3} E] [_inst_3 : Module.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] (p : SeminormFamily.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3) (U : Set.{u3} E), (Membership.mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.instMembershipSet.{u3} (Set.{u3} E)) U (SeminormFamily.basisSets.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) -> (Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) (OfNat.ofNat.{u3} E 0 (Zero.toOfNat0.{u3} E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))))) U)
-Case conversion may be inaccurate. Consider using '#align seminorm_family.basis_sets_zero SeminormFamily.basisSets_zeroβ'. -/
theorem basisSets_zero (U) (hU : U β p.basis_sets) : (0 : E) β U :=
by
rcases p.basis_sets_iff.mp hU with β¨ΞΉ', r, hr, hUβ©
@@ -156,12 +132,6 @@ theorem basisSets_zero (U) (hU : U β p.basis_sets) : (0 : E) β U :=
exact hr
#align seminorm_family.basis_sets_zero SeminormFamily.basisSets_zero
-/- warning: seminorm_family.basis_sets_add -> SeminormFamily.basisSets_add is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] (p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3) (U : Set.{u2} E), (Membership.Mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.hasMem.{u2} (Set.{u2} E)) U (SeminormFamily.basisSets.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) -> (Exists.{succ u2} (Set.{u2} E) (fun (V : Set.{u2} E) => Exists.{0} (Membership.Mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.hasMem.{u2} (Set.{u2} E)) V (SeminormFamily.basisSets.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) (fun (H : Membership.Mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.hasMem.{u2} (Set.{u2} E)) V (SeminormFamily.basisSets.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) => HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) (HAdd.hAdd.{u2, u2, u2} (Set.{u2} E) (Set.{u2} E) (Set.{u2} E) (instHAdd.{u2} (Set.{u2} E) (Set.add.{u2} E (AddZeroClass.toHasAdd.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))))) V V) U)))
-but is expected to have type
- forall {π : Type.{u2}} {E : Type.{u3}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u2} π] [_inst_2 : AddCommGroup.{u3} E] [_inst_3 : Module.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] (p : SeminormFamily.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3) (U : Set.{u3} E), (Membership.mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.instMembershipSet.{u3} (Set.{u3} E)) U (SeminormFamily.basisSets.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) -> (Exists.{succ u3} (Set.{u3} E) (fun (V : Set.{u3} E) => And (Membership.mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.instMembershipSet.{u3} (Set.{u3} E)) V (SeminormFamily.basisSets.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) (HasSubset.Subset.{u3} (Set.{u3} E) (Set.instHasSubsetSet.{u3} E) (HAdd.hAdd.{u3, u3, u3} (Set.{u3} E) (Set.{u3} E) (Set.{u3} E) (instHAdd.{u3} (Set.{u3} E) (Set.add.{u3} E (AddZeroClass.toAdd.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_2))))))) V V) U)))
-Case conversion may be inaccurate. Consider using '#align seminorm_family.basis_sets_add SeminormFamily.basisSets_addβ'. -/
theorem basisSets_add (U) (hU : U β p.basis_sets) :
β (V : Set E)(H : V β p.basis_sets), V + V β U :=
by
@@ -172,12 +142,6 @@ theorem basisSets_add (U) (hU : U β p.basis_sets) :
rw [hU, add_zero, add_halves']
#align seminorm_family.basis_sets_add SeminormFamily.basisSets_add
-/- warning: seminorm_family.basis_sets_neg -> SeminormFamily.basisSets_neg is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] (p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3) (U : Set.{u2} E), (Membership.Mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.hasMem.{u2} (Set.{u2} E)) U (SeminormFamily.basisSets.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) -> (Exists.{succ u2} (Set.{u2} E) (fun (V : Set.{u2} E) => Exists.{0} (Membership.Mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.hasMem.{u2} (Set.{u2} E)) V (SeminormFamily.basisSets.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) (fun (H : Membership.Mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.hasMem.{u2} (Set.{u2} E)) V (SeminormFamily.basisSets.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) => HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) V (Set.preimage.{u2, u2} E E (fun (x : E) => Neg.neg.{u2} E (SubNegMonoid.toHasNeg.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))) x) U))))
-but is expected to have type
- forall {π : Type.{u2}} {E : Type.{u3}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u2} π] [_inst_2 : AddCommGroup.{u3} E] [_inst_3 : Module.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] (p : SeminormFamily.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3) (U : Set.{u3} E), (Membership.mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.instMembershipSet.{u3} (Set.{u3} E)) U (SeminormFamily.basisSets.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) -> (Exists.{succ u3} (Set.{u3} E) (fun (V : Set.{u3} E) => And (Membership.mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.instMembershipSet.{u3} (Set.{u3} E)) V (SeminormFamily.basisSets.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) (HasSubset.Subset.{u3} (Set.{u3} E) (Set.instHasSubsetSet.{u3} E) V (Set.preimage.{u3, u3} E E (fun (x : E) => Neg.neg.{u3} E (NegZeroClass.toNeg.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) x) U))))
-Case conversion may be inaccurate. Consider using '#align seminorm_family.basis_sets_neg SeminormFamily.basisSets_negβ'. -/
theorem basisSets_neg (U) (hU' : U β p.basis_sets) :
β (V : Set E)(H : V β p.basis_sets), V β (fun x : E => -x) β»ΒΉ' U :=
by
@@ -194,9 +158,6 @@ protected def addGroupFilterBasis [Nonempty ΞΉ] : AddGroupFilterBasis E :=
#align seminorm_family.add_group_filter_basis SeminormFamily.addGroupFilterBasis
-/
-/- warning: seminorm_family.basis_sets_smul_right -> SeminormFamily.basisSets_smul_right is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align seminorm_family.basis_sets_smul_right SeminormFamily.basisSets_smul_rightβ'. -/
theorem basisSets_smul_right (v : E) (U : Set E) (hU : U β p.basis_sets) :
βαΆ x : π in π 0, x β’ v β U :=
by
@@ -213,9 +174,6 @@ theorem basisSets_smul_right (v : E) (U : Set E) (hU : U β p.basis_sets) :
variable [Nonempty ΞΉ]
-/- warning: seminorm_family.basis_sets_smul -> SeminormFamily.basisSets_smul is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align seminorm_family.basis_sets_smul SeminormFamily.basisSets_smulβ'. -/
theorem basisSets_smul (U) (hU : U β p.basis_sets) :
β (V : Set π)(H : V β π (0 : π))(W : Set E)(H : W β p.AddGroupFilterBasis.sets), V β’ W β U :=
by
@@ -226,9 +184,6 @@ theorem basisSets_smul (U) (hU : U β p.basis_sets) :
rw [hU, Real.mul_self_sqrt (le_of_lt hr)]
#align seminorm_family.basis_sets_smul SeminormFamily.basisSets_smul
-/- warning: seminorm_family.basis_sets_smul_left -> SeminormFamily.basisSets_smul_left is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align seminorm_family.basis_sets_smul_left SeminormFamily.basisSets_smul_leftβ'. -/
theorem basisSets_smul_left (x : π) (U : Set E) (hU : U β p.basis_sets) :
β (V : Set E)(H : V β p.AddGroupFilterBasis.sets), V β (fun y : E => x β’ y) β»ΒΉ' U :=
by
@@ -254,9 +209,6 @@ protected def moduleFilterBasis : ModuleFilterBasis π E
#align seminorm_family.module_filter_basis SeminormFamily.moduleFilterBasis
-/
-/- warning: seminorm_family.filter_eq_infi -> SeminormFamily.filter_eq_iInf is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align seminorm_family.filter_eq_infi SeminormFamily.filter_eq_iInfβ'. -/
theorem filter_eq_iInf (p : SeminormFamily π E ΞΉ) :
p.ModuleFilterBasis.toFilterBasis.filterβ = β¨
i, (π 0).comap (p i) :=
by
@@ -300,18 +252,12 @@ def IsBounded (p : ΞΉ β Seminorm π E) (q : ΞΉ' β Seminorm πβ F) (f :
#align seminorm.is_bounded Seminorm.IsBounded
-/
-/- warning: seminorm.is_bounded_const -> Seminorm.isBounded_const is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align seminorm.is_bounded_const Seminorm.isBounded_constβ'. -/
theorem isBounded_const (ΞΉ' : Type _) [Nonempty ΞΉ'] {p : ΞΉ β Seminorm π E} {q : Seminorm πβ F}
(f : E βββ[Οββ] F) :
IsBounded p (fun _ : ΞΉ' => q) f β β (s : Finset ΞΉ)(C : ββ₯0), q.comp f β€ C β’ s.sup p := by
simp only [is_bounded, forall_const]
#align seminorm.is_bounded_const Seminorm.isBounded_const
-/- warning: seminorm.const_is_bounded -> Seminorm.const_isBounded is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align seminorm.const_is_bounded Seminorm.const_isBoundedβ'. -/
theorem const_isBounded (ΞΉ : Type _) [Nonempty ΞΉ] {p : Seminorm π E} {q : ΞΉ' β Seminorm πβ F}
(f : E βββ[Οββ] F) : IsBounded (fun _ : ΞΉ => p) q f β β i, β C : ββ₯0, (q i).comp f β€ C β’ p :=
by
@@ -322,9 +268,6 @@ theorem const_isBounded (ΞΉ : Type _) [Nonempty ΞΉ] {p : Seminorm π E} {q :
simp only [h, Finset.sup_singleton]
#align seminorm.const_is_bounded Seminorm.const_isBounded
-/- warning: seminorm.is_bounded_sup -> Seminorm.isBounded_sup is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align seminorm.is_bounded_sup Seminorm.isBounded_supβ'. -/
theorem isBounded_sup {p : ΞΉ β Seminorm π E} {q : ΞΉ' β Seminorm πβ F} {f : E βββ[Οββ] F}
(hf : IsBounded p q f) (s' : Finset ΞΉ') :
β (C : ββ₯0)(s : Finset ΞΉ), (s'.sup q).comp f β€ C β’ s.sup p := by
@@ -360,12 +303,6 @@ structure WithSeminorms (p : SeminormFamily π E ΞΉ) [t : TopologicalSpace E]
#align with_seminorms WithSeminorms
-/
-/- warning: with_seminorms.with_seminorms_eq -> WithSeminorms.withSeminorms_eq is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u3} ΞΉ] {p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3} [t : TopologicalSpace.{u2} E], (WithSeminorms.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p t) -> (Eq.{succ u2} (TopologicalSpace.{u2} E) t (ModuleFilterBasis.topology.{u1, u2} π E (SeminormedCommRing.toCommRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) _inst_2 _inst_3 (SeminormFamily.moduleFilterBasis.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p _inst_4)))
-but is expected to have type
- forall {π : Type.{u3}} {E : Type.{u2}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u3} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u1} ΞΉ] {p : SeminormFamily.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3} [t : TopologicalSpace.{u2} E], (WithSeminorms.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p t) -> (Eq.{succ u2} (TopologicalSpace.{u2} E) t (ModuleFilterBasis.topology.{u3, u2} π E (EuclideanDomain.toCommRing.{u3} π (Field.toEuclideanDomain.{u3} π (NormedField.toField.{u3} π _inst_1))) (UniformSpace.toTopologicalSpace.{u3} π (PseudoMetricSpace.toUniformSpace.{u3} π (SeminormedRing.toPseudoMetricSpace.{u3} π (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1)))))) _inst_2 _inst_3 (SeminormFamily.moduleFilterBasis.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 p _inst_4)))
-Case conversion may be inaccurate. Consider using '#align with_seminorms.with_seminorms_eq WithSeminorms.withSeminorms_eqβ'. -/
theorem WithSeminorms.withSeminorms_eq {p : SeminormFamily π E ΞΉ} [t : TopologicalSpace E]
(hp : WithSeminorms p) : t = p.ModuleFilterBasis.topology :=
hp.1
@@ -375,24 +312,12 @@ variable [TopologicalSpace E]
variable {p : SeminormFamily π E ΞΉ}
-/- warning: with_seminorms.topological_add_group -> WithSeminorms.topologicalAddGroup is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u3} ΞΉ] [_inst_5 : TopologicalSpace.{u2} E] {p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3}, (WithSeminorms.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p _inst_5) -> (TopologicalAddGroup.{u2} E _inst_5 (AddCommGroup.toAddGroup.{u2} E _inst_2))
-but is expected to have type
- forall {π : Type.{u3}} {E : Type.{u2}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u3} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u1} ΞΉ] [_inst_5 : TopologicalSpace.{u2} E] {p : SeminormFamily.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3}, (WithSeminorms.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p _inst_5) -> (TopologicalAddGroup.{u2} E _inst_5 (AddCommGroup.toAddGroup.{u2} E _inst_2))
-Case conversion may be inaccurate. Consider using '#align with_seminorms.topological_add_group WithSeminorms.topologicalAddGroupβ'. -/
theorem WithSeminorms.topologicalAddGroup (hp : WithSeminorms p) : TopologicalAddGroup E :=
by
rw [hp.with_seminorms_eq]
exact AddGroupFilterBasis.isTopologicalAddGroup _
#align with_seminorms.topological_add_group WithSeminorms.topologicalAddGroup
-/- warning: with_seminorms.has_basis -> WithSeminorms.hasBasis is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u3} ΞΉ] [_inst_5 : TopologicalSpace.{u2} E] {p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3}, (WithSeminorms.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p _inst_5) -> (Filter.HasBasis.{u2, succ u2} E (Set.{u2} E) (nhds.{u2} E _inst_5 (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))))))) (fun (s : Set.{u2} E) => Membership.Mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.hasMem.{u2} (Set.{u2} E)) s (SeminormFamily.basisSets.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) (id.{succ u2} (Set.{u2} E)))
-but is expected to have type
- forall {π : Type.{u3}} {E : Type.{u2}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u3} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u1} ΞΉ] [_inst_5 : TopologicalSpace.{u2} E] {p : SeminormFamily.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3}, (WithSeminorms.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p _inst_5) -> (Filter.HasBasis.{u2, succ u2} E (Set.{u2} E) (nhds.{u2} E _inst_5 (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2)))))))) (fun (s : Set.{u2} E) => Membership.mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.instMembershipSet.{u2} (Set.{u2} E)) s (SeminormFamily.basisSets.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) (id.{succ u2} (Set.{u2} E)))
-Case conversion may be inaccurate. Consider using '#align with_seminorms.has_basis WithSeminorms.hasBasisβ'. -/
theorem WithSeminorms.hasBasis (hp : WithSeminorms p) :
(π (0 : E)).HasBasis (fun s : Set E => s β p.basis_sets) id :=
by
@@ -400,9 +325,6 @@ theorem WithSeminorms.hasBasis (hp : WithSeminorms p) :
exact AddGroupFilterBasis.nhds_zero_hasBasis _
#align with_seminorms.has_basis WithSeminorms.hasBasis
-/- warning: with_seminorms.has_basis_zero_ball -> WithSeminorms.hasBasis_zero_ball is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align with_seminorms.has_basis_zero_ball WithSeminorms.hasBasis_zero_ballβ'. -/
theorem WithSeminorms.hasBasis_zero_ball (hp : WithSeminorms p) :
(π (0 : E)).HasBasis (fun sr : Finset ΞΉ Γ β => 0 < sr.2) fun sr => (sr.1.sup p).ball 0 sr.2 :=
by
@@ -415,9 +337,6 @@ theorem WithSeminorms.hasBasis_zero_ball (hp : WithSeminorms p) :
exact β¨_, β¨s, r, hr, rflβ©, hVβ©
#align with_seminorms.has_basis_zero_ball WithSeminorms.hasBasis_zero_ball
-/- warning: with_seminorms.has_basis_ball -> WithSeminorms.hasBasis_ball is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align with_seminorms.has_basis_ball WithSeminorms.hasBasis_ballβ'. -/
theorem WithSeminorms.hasBasis_ball (hp : WithSeminorms p) {x : E} :
(π (x : E)).HasBasis (fun sr : Finset ΞΉ Γ β => 0 < sr.2) fun sr => (sr.1.sup p).ball x sr.2 :=
by
@@ -430,9 +349,6 @@ theorem WithSeminorms.hasBasis_ball (hp : WithSeminorms p) {x : E} :
rwa [vadd_eq_add, add_zero] at this
#align with_seminorms.has_basis_ball WithSeminorms.hasBasis_ball
-/- warning: with_seminorms.mem_nhds_iff -> WithSeminorms.mem_nhds_iff is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align with_seminorms.mem_nhds_iff WithSeminorms.mem_nhds_iffβ'. -/
/-- The `x`-neighbourhoods of a space whose topology is induced by a family of seminorms
are exactly the sets which contain seminorm balls around `x`.-/
theorem WithSeminorms.mem_nhds_iff (hp : WithSeminorms p) (x : E) (U : Set E) :
@@ -440,9 +356,6 @@ theorem WithSeminorms.mem_nhds_iff (hp : WithSeminorms p) (x : E) (U : Set E) :
rw [hp.has_basis_ball.mem_iff, Prod.exists]
#align with_seminorms.mem_nhds_iff WithSeminorms.mem_nhds_iff
-/- warning: with_seminorms.is_open_iff_mem_balls -> WithSeminorms.isOpen_iff_mem_balls is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align with_seminorms.is_open_iff_mem_balls WithSeminorms.isOpen_iff_mem_ballsβ'. -/
/-- The open sets of a space whose topology is induced by a family of seminorms
are exactly the sets which contain seminorm balls around all of their points.-/
theorem WithSeminorms.isOpen_iff_mem_balls (hp : WithSeminorms p) (U : Set E) :
@@ -450,9 +363,6 @@ theorem WithSeminorms.isOpen_iff_mem_balls (hp : WithSeminorms p) (U : Set E) :
simp_rw [β WithSeminorms.mem_nhds_iff hp _ U, isOpen_iff_mem_nhds]
#align with_seminorms.is_open_iff_mem_balls WithSeminorms.isOpen_iff_mem_balls
-/- warning: with_seminorms.t1_of_separating -> WithSeminorms.T1_of_separating is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align with_seminorms.t1_of_separating WithSeminorms.T1_of_separatingβ'. -/
/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (x Β«expr β Β» 0) -/
/- Note that through the following lemmas, one also immediately has that separating families
of seminorms induce Tβ and Tβ topologies by `topological_add_group.t2_space`
@@ -470,9 +380,6 @@ theorem WithSeminorms.T1_of_separating (hp : WithSeminorms p)
rw [Finset.sup_singleton, mem_ball, zero_sub, map_neg_eq_map, not_lt]
#align with_seminorms.t1_of_separating WithSeminorms.T1_of_separating
-/- warning: with_seminorms.separating_of_t1 -> WithSeminorms.separating_of_T1 is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align with_seminorms.separating_of_t1 WithSeminorms.separating_of_T1β'. -/
/-- A family of seminorms inducing a Tβ topology is separating. -/
theorem WithSeminorms.separating_of_T1 [T1Space E] (hp : WithSeminorms p) (x : E) (hx : x β 0) :
β i, p i x β 0 := by
@@ -484,9 +391,6 @@ theorem WithSeminorms.separating_of_T1 [T1Space E] (hp : WithSeminorms p) (x : E
simp only [ball_finset_sup_eq_Inter _ _ _ hr, mem_Interβ, mem_ball_zero, h, hr, forall_true_iff]
#align with_seminorms.separating_of_t1 WithSeminorms.separating_of_T1
-/- warning: with_seminorms.separating_iff_t1 -> WithSeminorms.separating_iff_T1 is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align with_seminorms.separating_iff_t1 WithSeminorms.separating_iff_T1β'. -/
/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (x Β«expr β Β» 0) -/
/-- A family of seminorms is separating iff it induces a Tβ topology. -/
theorem WithSeminorms.separating_iff_T1 (hp : WithSeminorms p) :
@@ -505,9 +409,6 @@ variable [NormedField π] [AddCommGroup E] [Module π E] [Nonempty ΞΉ] [Topo
variable {p : SeminormFamily π E ΞΉ}
-/- warning: with_seminorms.tendsto_nhds' -> WithSeminorms.tendsto_nhds' is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align with_seminorms.tendsto_nhds' WithSeminorms.tendsto_nhds'β'. -/
/-- Convergence along filters for `with_seminorms`.
Variant with `finset.sup`. -/
@@ -516,9 +417,6 @@ theorem WithSeminorms.tendsto_nhds' (hp : WithSeminorms p) (u : F β E) {f : Fi
by simp [hp.has_basis_ball.tendsto_right_iff]
#align with_seminorms.tendsto_nhds' WithSeminorms.tendsto_nhds'
-/- warning: with_seminorms.tendsto_nhds -> WithSeminorms.tendsto_nhds is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align with_seminorms.tendsto_nhds WithSeminorms.tendsto_nhdsβ'. -/
/-- Convergence along filters for `with_seminorms`. -/
theorem WithSeminorms.tendsto_nhds (hp : WithSeminorms p) (u : F β E) {f : Filter F} (yβ : E) :
Filter.Tendsto u f (π yβ) β β i Ξ΅, 0 < Ξ΅ β βαΆ x in f, p i (u x - yβ) < Ξ΅ :=
@@ -531,9 +429,6 @@ theorem WithSeminorms.tendsto_nhds (hp : WithSeminorms p) (u : F β E) {f : Fil
variable [SemilatticeSup F] [Nonempty F]
-/- warning: with_seminorms.tendsto_nhds_at_top -> WithSeminorms.tendsto_nhds_atTop is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align with_seminorms.tendsto_nhds_at_top WithSeminorms.tendsto_nhds_atTopβ'. -/
/-- Limit `β β` for `with_seminorms`. -/
theorem WithSeminorms.tendsto_nhds_atTop (hp : WithSeminorms p) (u : F β E) (yβ : E) :
Filter.Tendsto u Filter.atTop (π yβ) β β i Ξ΅, 0 < Ξ΅ β β xβ, β x, xβ β€ x β p i (u x - yβ) < Ξ΅ :=
@@ -554,12 +449,6 @@ variable [Nonempty ΞΉ]
include t
-/- warning: seminorm_family.with_seminorms_of_nhds -> SeminormFamily.withSeminorms_of_nhds is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [t : TopologicalSpace.{u2} E] [_inst_4 : TopologicalAddGroup.{u2} E t (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_5 : Nonempty.{succ u3} ΞΉ] (p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3), (Eq.{succ u2} (Filter.{u2} E) (nhds.{u2} E t (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))))))) (FilterBasis.filter.{u2} E (AddGroupFilterBasis.toFilterBasis.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2) (ModuleFilterBasis.toAddGroupFilterBasis.{u1, u2} π E (SeminormedCommRing.toCommRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) _inst_2 _inst_3 (SeminormFamily.moduleFilterBasis.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p _inst_5))))) -> (WithSeminorms.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_5 p t)
-but is expected to have type
- forall {π : Type.{u3}} {E : Type.{u2}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u3} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [t : Nonempty.{succ u1} ΞΉ] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] (p : SeminormFamily.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3), (Eq.{succ u2} (Filter.{u2} E) (nhds.{u2} E _inst_4 (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2)))))))) (FilterBasis.filter.{u2} E (AddGroupFilterBasis.toFilterBasis.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2) (ModuleFilterBasis.toAddGroupFilterBasis.{u3, u2} π E (EuclideanDomain.toCommRing.{u3} π (Field.toEuclideanDomain.{u3} π (NormedField.toField.{u3} π _inst_1))) (UniformSpace.toTopologicalSpace.{u3} π (PseudoMetricSpace.toUniformSpace.{u3} π (SeminormedRing.toPseudoMetricSpace.{u3} π (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1)))))) _inst_2 _inst_3 (SeminormFamily.moduleFilterBasis.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 p t))))) -> (WithSeminorms.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 t p _inst_4)
-Case conversion may be inaccurate. Consider using '#align seminorm_family.with_seminorms_of_nhds SeminormFamily.withSeminorms_of_nhdsβ'. -/
theorem SeminormFamily.withSeminorms_of_nhds (p : SeminormFamily π E ΞΉ)
(h : π (0 : E) = p.ModuleFilterBasis.toFilterBasis.filterβ) : WithSeminorms p :=
by
@@ -569,21 +458,12 @@ theorem SeminormFamily.withSeminorms_of_nhds (p : SeminormFamily π E ΞΉ)
exact h
#align seminorm_family.with_seminorms_of_nhds SeminormFamily.withSeminorms_of_nhds
-/- warning: seminorm_family.with_seminorms_of_has_basis -> SeminormFamily.withSeminorms_of_hasBasis is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [t : TopologicalSpace.{u2} E] [_inst_4 : TopologicalAddGroup.{u2} E t (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_5 : Nonempty.{succ u3} ΞΉ] (p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3), (Filter.HasBasis.{u2, succ u2} E (Set.{u2} E) (nhds.{u2} E t (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))))))) (fun (s : Set.{u2} E) => Membership.Mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.hasMem.{u2} (Set.{u2} E)) s (SeminormFamily.basisSets.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) (id.{succ u2} (Set.{u2} E))) -> (WithSeminorms.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_5 p t)
-but is expected to have type
- forall {π : Type.{u3}} {E : Type.{u2}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u3} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [t : Nonempty.{succ u1} ΞΉ] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] (p : SeminormFamily.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3), (Filter.HasBasis.{u2, succ u2} E (Set.{u2} E) (nhds.{u2} E _inst_4 (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2)))))))) (fun (s : Set.{u2} E) => Membership.mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.instMembershipSet.{u2} (Set.{u2} E)) s (SeminormFamily.basisSets.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) (id.{succ u2} (Set.{u2} E))) -> (WithSeminorms.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 t p _inst_4)
-Case conversion may be inaccurate. Consider using '#align seminorm_family.with_seminorms_of_has_basis SeminormFamily.withSeminorms_of_hasBasisβ'. -/
theorem SeminormFamily.withSeminorms_of_hasBasis (p : SeminormFamily π E ΞΉ)
(h : (π (0 : E)).HasBasis (fun s : Set E => s β p.basis_sets) id) : WithSeminorms p :=
p.withSeminorms_of_nhds <|
Filter.HasBasis.eq_of_same_basis h p.AddGroupFilterBasis.toFilterBasis.HasBasis
#align seminorm_family.with_seminorms_of_has_basis SeminormFamily.withSeminorms_of_hasBasis
-/- warning: seminorm_family.with_seminorms_iff_nhds_eq_infi -> SeminormFamily.withSeminorms_iff_nhds_eq_iInf is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align seminorm_family.with_seminorms_iff_nhds_eq_infi SeminormFamily.withSeminorms_iff_nhds_eq_iInfβ'. -/
theorem SeminormFamily.withSeminorms_iff_nhds_eq_iInf (p : SeminormFamily π E ΞΉ) :
WithSeminorms p β (π 0 : Filter E) = β¨
i, (π 0).comap (p i) :=
by
@@ -593,9 +473,6 @@ theorem SeminormFamily.withSeminorms_iff_nhds_eq_iInf (p : SeminormFamily π E
exact AddGroupFilterBasis.nhds_zero_eq _
#align seminorm_family.with_seminorms_iff_nhds_eq_infi SeminormFamily.withSeminorms_iff_nhds_eq_iInf
-/- warning: with_seminorms.continuous_seminorm -> WithSeminorms.continuous_seminorm is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align with_seminorms.continuous_seminorm WithSeminorms.continuous_seminormβ'. -/
theorem WithSeminorms.continuous_seminorm [NontriviallyNormedField π] [Module π E]
[ContinuousConstSMul π E] {p : SeminormFamily π E ΞΉ} (hp : WithSeminorms p) (i : ΞΉ) :
Continuous (p i) := by
@@ -604,9 +481,6 @@ theorem WithSeminorms.continuous_seminorm [NontriviallyNormedField π] [Module
exact Filter.mem_iInf_of_mem i (Filter.preimage_mem_comap <| Metric.ball_mem_nhds _ one_pos)
#align with_seminorms.continuous_seminorm WithSeminorms.continuous_seminorm
-/- warning: seminorm_family.with_seminorms_iff_topological_space_eq_infi -> SeminormFamily.withSeminorms_iff_topologicalSpace_eq_iInf is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align seminorm_family.with_seminorms_iff_topological_space_eq_infi SeminormFamily.withSeminorms_iff_topologicalSpace_eq_iInfβ'. -/
/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `congrm #[[expr Β«expr = Β»(_, Β«exprβ¨
, Β»((i), _))]] -/
/-- The topology induced by a family of seminorms is exactly the infimum of the ones induced by
each seminorm individually. We express this as a characterization of `with_seminorms p`. -/
@@ -626,9 +500,6 @@ theorem SeminormFamily.withSeminorms_iff_topologicalSpace_eq_iInf (p : SeminormF
omit t
-/- warning: seminorm_family.with_seminorms_iff_uniform_space_eq_infi -> SeminormFamily.withSeminorms_iff_uniformSpace_eq_iInf is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align seminorm_family.with_seminorms_iff_uniform_space_eq_infi SeminormFamily.withSeminorms_iff_uniformSpace_eq_iInfβ'. -/
/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `congrm #[[expr Β«expr = Β»(_, Β«exprβ¨
, Β»((i), _))]] -/
/-- The uniform structure induced by a family of seminorms is exactly the infimum of the ones
induced by each seminorm individually. We express this as a characterization of
@@ -650,12 +521,6 @@ end TopologicalAddGroup
section NormedSpace
-/- warning: norm_with_seminorms -> norm_withSeminorms is a dubious translation:
-lean 3 declaration is
- forall (π : Type.{u1}) (E : Type.{u2}) [_inst_1 : NormedField.{u1} π] [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E _inst_1 _inst_2], WithSeminorms.{u1, u2, 0} π E (Fin (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) _inst_1 (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2) (NormedSpace.toModule.{u1, u2} π E _inst_1 _inst_2 _inst_3) (instNonempty.{1} (Fin (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (Fin.inhabited (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))))) (fun (_x : Fin (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) => normSeminorm.{u1, u2} π E _inst_1 _inst_2 _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2)))
-but is expected to have type
- forall (π : Type.{u2}) (E : Type.{u1}) [_inst_1 : NormedField.{u2} π] [_inst_2 : SeminormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π E _inst_1 _inst_2], WithSeminorms.{u2, u1, 0} π E (Fin (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) _inst_1 (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2) (NormedSpace.toModule.{u2, u1} π E _inst_1 _inst_2 _inst_3) (instNonempty.{1} (Fin (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (instInhabitedFinSucc (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)))) (fun (_x : Fin (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) => normSeminorm.{u2, u1} π E _inst_1 _inst_2 _inst_3) (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2)))
-Case conversion may be inaccurate. Consider using '#align norm_with_seminorms norm_withSeminormsβ'. -/
/-- The topology of a `normed_space π E` is induced by the seminorm `norm_seminorm π E`. -/
theorem norm_withSeminorms (π E) [NormedField π] [SeminormedAddCommGroup E] [NormedSpace π E] :
WithSeminorms fun _ : Fin 1 => normSeminorm π E :=
@@ -689,9 +554,6 @@ variable {p : SeminormFamily π E ΞΉ}
variable [TopologicalSpace E]
-/- warning: with_seminorms.is_vonN_bounded_iff_finset_seminorm_bounded -> WithSeminorms.isVonNBounded_iff_finset_seminorm_bounded is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align with_seminorms.is_vonN_bounded_iff_finset_seminorm_bounded WithSeminorms.isVonNBounded_iff_finset_seminorm_boundedβ'. -/
theorem WithSeminorms.isVonNBounded_iff_finset_seminorm_bounded {s : Set E} (hp : WithSeminorms p) :
Bornology.IsVonNBounded π s β β I : Finset ΞΉ, β (r : _)(hr : 0 < r), β x β s, I.sup p x < r :=
by
@@ -717,9 +579,6 @@ theorem WithSeminorms.isVonNBounded_iff_finset_seminorm_bounded {s : Set E} (hp
exact (Finset.sup I p).ball_zero_absorbs_ball_zero hr
#align with_seminorms.is_vonN_bounded_iff_finset_seminorm_bounded WithSeminorms.isVonNBounded_iff_finset_seminorm_bounded
-/- warning: with_seminorms.image_is_vonN_bounded_iff_finset_seminorm_bounded -> WithSeminorms.image_isVonNBounded_iff_finset_seminorm_bounded is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align with_seminorms.image_is_vonN_bounded_iff_finset_seminorm_bounded WithSeminorms.image_isVonNBounded_iff_finset_seminorm_boundedβ'. -/
theorem WithSeminorms.image_isVonNBounded_iff_finset_seminorm_bounded (f : G β E) {s : Set G}
(hp : WithSeminorms p) :
Bornology.IsVonNBounded π (f '' s) β
@@ -727,9 +586,6 @@ theorem WithSeminorms.image_isVonNBounded_iff_finset_seminorm_bounded (f : G β
by simp_rw [hp.is_vonN_bounded_iff_finset_seminorm_bounded, Set.ball_image_iff]
#align with_seminorms.image_is_vonN_bounded_iff_finset_seminorm_bounded WithSeminorms.image_isVonNBounded_iff_finset_seminorm_bounded
-/- warning: with_seminorms.is_vonN_bounded_iff_seminorm_bounded -> WithSeminorms.isVonNBounded_iff_seminorm_bounded is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align with_seminorms.is_vonN_bounded_iff_seminorm_bounded WithSeminorms.isVonNBounded_iff_seminorm_boundedβ'. -/
theorem WithSeminorms.isVonNBounded_iff_seminorm_bounded {s : Set E} (hp : WithSeminorms p) :
Bornology.IsVonNBounded π s β β i : ΞΉ, β (r : _)(hr : 0 < r), β x β s, p i x < r :=
by
@@ -752,9 +608,6 @@ theorem WithSeminorms.isVonNBounded_iff_seminorm_bounded {s : Set E} (hp : WithS
exact β¨1, zero_lt_one, fun _ _ => zero_lt_oneβ©
#align with_seminorms.is_vonN_bounded_iff_seminorm_bounded WithSeminorms.isVonNBounded_iff_seminorm_bounded
-/- warning: with_seminorms.image_is_vonN_bounded_iff_seminorm_bounded -> WithSeminorms.image_isVonNBounded_iff_seminorm_bounded is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align with_seminorms.image_is_vonN_bounded_iff_seminorm_bounded WithSeminorms.image_isVonNBounded_iff_seminorm_boundedβ'. -/
theorem WithSeminorms.image_isVonNBounded_iff_seminorm_bounded (f : G β E) {s : Set G}
(hp : WithSeminorms p) :
Bornology.IsVonNBounded π (f '' s) β β i : ΞΉ, β (r : _)(hr : 0 < r), β x β s, p i (f x) < r :=
@@ -781,9 +634,6 @@ variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [Nonempty ΞΉ] [Nonempty ΞΉ']
-/- warning: seminorm.continuous_of_continuous_comp -> Seminorm.continuous_of_continuous_comp is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align seminorm.continuous_of_continuous_comp Seminorm.continuous_of_continuous_compβ'. -/
theorem continuous_of_continuous_comp {q : SeminormFamily πβ F ΞΉ'} [TopologicalSpace E]
[TopologicalAddGroup E] [TopologicalSpace F] [TopologicalAddGroup F] (hq : WithSeminorms q)
(f : E βββ[Οββ] F) (hf : β i, Continuous ((q i).comp f)) : Continuous f :=
@@ -796,18 +646,12 @@ theorem continuous_of_continuous_comp {q : SeminormFamily πβ F ΞΉ'} [Topolo
exact (map_zero _).symm
#align seminorm.continuous_of_continuous_comp Seminorm.continuous_of_continuous_comp
-/- warning: seminorm.continuous_iff_continuous_comp -> Seminorm.continuous_iff_continuous_comp is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align seminorm.continuous_iff_continuous_comp Seminorm.continuous_iff_continuous_compβ'. -/
theorem continuous_iff_continuous_comp {q : SeminormFamily πβ F ΞΉ'} [TopologicalSpace E]
[TopologicalAddGroup E] [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousConstSMul πβ F]
(hq : WithSeminorms q) (f : E βββ[Οββ] F) : Continuous f β β i, Continuous ((q i).comp f) :=
β¨fun h i => Continuous.comp (hq.continuous_seminorm i) h, continuous_of_continuous_comp hq fβ©
#align seminorm.continuous_iff_continuous_comp Seminorm.continuous_iff_continuous_comp
-/- warning: seminorm.continuous_from_bounded -> Seminorm.continuous_from_bounded is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align seminorm.continuous_from_bounded Seminorm.continuous_from_boundedβ'. -/
theorem continuous_from_bounded {p : SeminormFamily π E ΞΉ} {q : SeminormFamily πβ F ΞΉ'}
[TopologicalSpace E] [TopologicalAddGroup E] (hp : WithSeminorms p) [TopologicalSpace F]
[TopologicalAddGroup F] (hq : WithSeminorms q) (f : E βββ[Οββ] F)
@@ -828,9 +672,6 @@ theorem continuous_from_bounded {p : SeminormFamily π E ΞΉ} {q : SeminormFami
simp only [le_add_iff_nonneg_right, zero_le']
#align seminorm.continuous_from_bounded Seminorm.continuous_from_bounded
-/- warning: seminorm.cont_with_seminorms_normed_space -> Seminorm.cont_withSeminorms_normedSpace is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align seminorm.cont_with_seminorms_normed_space Seminorm.cont_withSeminorms_normedSpaceβ'. -/
theorem cont_withSeminorms_normedSpace (F) [SeminormedAddCommGroup F] [NormedSpace πβ F]
[UniformSpace E] [UniformAddGroup E] {p : ΞΉ β Seminorm π E} (hp : WithSeminorms p)
(f : E βββ[Οββ] F) (hf : β (s : Finset ΞΉ)(C : ββ₯0), (normSeminorm πβ F).comp f β€ C β’ s.sup p) :
@@ -839,9 +680,6 @@ theorem cont_withSeminorms_normedSpace (F) [SeminormedAddCommGroup F] [NormedSpa
exact continuous_from_bounded hp (norm_withSeminorms πβ F) f hf
#align seminorm.cont_with_seminorms_normed_space Seminorm.cont_withSeminorms_normedSpace
-/- warning: seminorm.cont_normed_space_to_with_seminorms -> Seminorm.cont_normedSpace_to_withSeminorms is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align seminorm.cont_normed_space_to_with_seminorms Seminorm.cont_normedSpace_to_withSeminormsβ'. -/
theorem cont_normedSpace_to_withSeminorms (E) [SeminormedAddCommGroup E] [NormedSpace π E]
[UniformSpace F] [UniformAddGroup F] {q : ΞΉ β Seminorm πβ F} (hq : WithSeminorms q)
(f : E βββ[Οββ] F) (hf : β i : ΞΉ, β C : ββ₯0, (q i).comp f β€ C β’ normSeminorm π E) :
@@ -861,9 +699,6 @@ open LocallyConvexSpace
variable [Nonempty ΞΉ] [NormedField π] [NormedSpace β π] [AddCommGroup E] [Module π E] [Module β E]
[IsScalarTower β π E] [TopologicalSpace E] [TopologicalAddGroup E]
-/- warning: with_seminorms.to_locally_convex_space -> WithSeminorms.toLocallyConvexSpace is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align with_seminorms.to_locally_convex_space WithSeminorms.toLocallyConvexSpaceβ'. -/
theorem WithSeminorms.toLocallyConvexSpace {p : SeminormFamily π E ΞΉ} (hp : WithSeminorms p) :
LocallyConvexSpace β E :=
by
@@ -883,9 +718,6 @@ section NormedSpace
variable (π) [NormedField π] [NormedSpace β π] [SeminormedAddCommGroup E]
-/- warning: normed_space.to_locally_convex_space' -> NormedSpace.toLocallyConvexSpace' is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align normed_space.to_locally_convex_space' NormedSpace.toLocallyConvexSpace'β'. -/
/-- Not an instance since `π` can't be inferred. See `normed_space.to_locally_convex_space` for a
slightly weaker instance version. -/
theorem NormedSpace.toLocallyConvexSpace' [NormedSpace π E] [Module β E] [IsScalarTower β π E] :
@@ -918,17 +750,11 @@ def SeminormFamily.comp (q : SeminormFamily πβ F ΞΉ) (f : E βββ[Οβ
#align seminorm_family.comp SeminormFamily.comp
-/
-/- warning: seminorm_family.comp_apply -> SeminormFamily.comp_apply is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align seminorm_family.comp_apply SeminormFamily.comp_applyβ'. -/
theorem SeminormFamily.comp_apply (q : SeminormFamily πβ F ΞΉ) (i : ΞΉ) (f : E βββ[Οββ] F) :
q.comp f i = (q i).comp f :=
rfl
#align seminorm_family.comp_apply SeminormFamily.comp_apply
-/- warning: seminorm_family.finset_sup_comp -> SeminormFamily.finset_sup_comp is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align seminorm_family.finset_sup_comp SeminormFamily.finset_sup_compβ'. -/
theorem SeminormFamily.finset_sup_comp (q : SeminormFamily πβ F ΞΉ) (s : Finset ΞΉ)
(f : E βββ[Οββ] F) : (s.sup q).comp f = s.sup (q.comp f) :=
by
@@ -939,9 +765,6 @@ theorem SeminormFamily.finset_sup_comp (q : SeminormFamily πβ F ΞΉ) (s : Fi
variable [TopologicalSpace F] [TopologicalAddGroup F]
-/- warning: linear_map.with_seminorms_induced -> LinearMap.withSeminorms_induced is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align linear_map.with_seminorms_induced LinearMap.withSeminorms_inducedβ'. -/
theorem LinearMap.withSeminorms_induced [hΞΉ : Nonempty ΞΉ] {q : SeminormFamily πβ F ΞΉ}
(hq : WithSeminorms q) (f : E βββ[Οββ] F) :
@WithSeminorms π E ΞΉ _ _ _ _ (q.comp f) (induced f inferInstance) :=
@@ -954,9 +777,6 @@ theorem LinearMap.withSeminorms_induced [hΞΉ : Nonempty ΞΉ] {q : SeminormFamily
exact Filter.comap_comap
#align linear_map.with_seminorms_induced LinearMap.withSeminorms_induced
-/- warning: inducing.with_seminorms -> Inducing.withSeminorms is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align inducing.with_seminorms Inducing.withSeminormsβ'. -/
theorem Inducing.withSeminorms [hΞΉ : Nonempty ΞΉ] {q : SeminormFamily πβ F ΞΉ} (hq : WithSeminorms q)
[TopologicalSpace E] {f : E βββ[Οββ] F} (hf : Inducing f) : WithSeminorms (q.comp f) :=
by
@@ -974,12 +794,6 @@ variable {p : SeminormFamily π E ΞΉ}
variable [UniformSpace E] [UniformAddGroup E]
-/- warning: with_seminorms.first_countable -> WithSeminorms.first_countable is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u3} ΞΉ] [_inst_5 : Countable.{succ u3} ΞΉ] {p : SeminormFamily.{u1, u2, u3} π E ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2 _inst_3} [_inst_6 : UniformSpace.{u2} E] [_inst_7 : UniformAddGroup.{u2} E _inst_6 (AddCommGroup.toAddGroup.{u2} E _inst_2)], (WithSeminorms.{u1, u2, u3} π E ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2 _inst_3 _inst_4 p (UniformSpace.toTopologicalSpace.{u2} E _inst_6)) -> (TopologicalSpace.FirstCountableTopology.{u2} E (UniformSpace.toTopologicalSpace.{u2} E _inst_6))
-but is expected to have type
- forall {π : Type.{u3}} {E : Type.{u2}} {ΞΉ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u3} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u1} ΞΉ] [_inst_5 : Countable.{succ u1} ΞΉ] {p : SeminormFamily.{u3, u2, u1} π E ΞΉ (NontriviallyNormedField.toNormedField.{u3} π _inst_1) _inst_2 _inst_3} [_inst_6 : UniformSpace.{u2} E] [_inst_7 : UniformAddGroup.{u2} E _inst_6 (AddCommGroup.toAddGroup.{u2} E _inst_2)], (WithSeminorms.{u3, u2, u1} π E ΞΉ (NontriviallyNormedField.toNormedField.{u3} π _inst_1) _inst_2 _inst_3 _inst_4 p (UniformSpace.toTopologicalSpace.{u2} E _inst_6)) -> (TopologicalSpace.FirstCountableTopology.{u2} E (UniformSpace.toTopologicalSpace.{u2} E _inst_6))
-Case conversion may be inaccurate. Consider using '#align with_seminorms.first_countable WithSeminorms.first_countableβ'. -/
/-- If the topology of a space is induced by a countable family of seminorms, then the topology
is first countable. -/
theorem WithSeminorms.first_countable (hp : WithSeminorms p) :
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -741,8 +741,7 @@ theorem WithSeminorms.isVonNBounded_iff_seminorm_bounded {s : Set E} (hp : WithS
intro hi I
by_cases hI : I.nonempty
Β· choose r hr h using hi
- have h' : 0 < I.sup' hI r := by
- rcases hI.bex with β¨i, hiβ©
+ have h' : 0 < I.sup' hI r := by rcases hI.bex with β¨i, hiβ©;
exact lt_of_lt_of_le (hr i) (Finset.le_sup' r hi)
refine' β¨I.sup' hI r, h', fun x hx => finset_sup_apply_lt h' fun i hi => _β©
refine' lt_of_lt_of_le (h i x hx) _
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -87,10 +87,7 @@ def basisSets (p : SeminormFamily π E ΞΉ) : Set (Set E) :=
variable (p : SeminormFamily π E ΞΉ)
/- warning: seminorm_family.basis_sets_iff -> SeminormFamily.basisSets_iff is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] (p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3) {U : Set.{u2} E}, Iff (Membership.Mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.hasMem.{u2} (Set.{u2} E)) U (SeminormFamily.basisSets.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) (Exists.{succ u3} (Finset.{u3} ΞΉ) (fun (i : Finset.{u3} ΞΉ) => Exists.{1} Real (fun (r : Real) => Exists.{0} (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) (fun (hr : LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) => Eq.{succ u2} (Set.{u2} E) U (Seminorm.ball.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) _inst_2 (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (Finset.sup.{u2, u3} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) ΞΉ (Seminorm.semilatticeSup.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (Seminorm.orderBot.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) _inst_2 _inst_3) i p) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2)))))))) r)))))
-but is expected to have type
- forall {π : Type.{u2}} {E : Type.{u3}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u2} π] [_inst_2 : AddCommGroup.{u3} E] [_inst_3 : Module.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] (p : SeminormFamily.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3) {U : Set.{u3} E}, Iff (Membership.mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.instMembershipSet.{u3} (Set.{u3} E)) U (SeminormFamily.basisSets.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) (Exists.{succ u1} (Finset.{u1} ΞΉ) (fun (i : Finset.{u1} ΞΉ) => Exists.{1} Real (fun (r : Real) => Exists.{0} (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) (fun (hr : LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) => Eq.{succ u3} (Set.{u3} E) U (Seminorm.ball.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))) _inst_2 (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3)))) (Finset.sup.{u3, u1} (Seminorm.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) ΞΉ (Seminorm.instSemilatticeSup.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) (Seminorm.instOrderBot.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))) _inst_2 _inst_3) i p) (OfNat.ofNat.{u3} E 0 (Zero.toOfNat0.{u3} E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))))) r)))))
+<too large>
Case conversion may be inaccurate. Consider using '#align seminorm_family.basis_sets_iff SeminormFamily.basisSets_iffβ'. -/
theorem basisSets_iff {U : Set E} :
U β p.basis_sets β β (i : Finset ΞΉ)(r : _)(hr : 0 < r), U = ball (i.sup p) 0 r := by
@@ -98,10 +95,7 @@ theorem basisSets_iff {U : Set E} :
#align seminorm_family.basis_sets_iff SeminormFamily.basisSets_iff
/- warning: seminorm_family.basis_sets_mem -> SeminormFamily.basisSets_mem is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] (p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3) (i : Finset.{u3} ΞΉ) {r : Real}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) -> (Membership.Mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.hasMem.{u2} (Set.{u2} E)) (Seminorm.ball.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) _inst_2 (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (Finset.sup.{u2, u3} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) ΞΉ (Seminorm.semilatticeSup.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (Seminorm.orderBot.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) _inst_2 _inst_3) i p) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2)))))))) r) (SeminormFamily.basisSets.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p))
-but is expected to have type
- forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] (p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3) (i : Finset.{u3} ΞΉ) {r : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (Membership.mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.instMembershipSet.{u2} (Set.{u2} E)) (Seminorm.ball.{u1, u2} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) _inst_2 (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (Finset.sup.{u2, u3} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) ΞΉ (Seminorm.instSemilatticeSup.{u1, u2} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (Seminorm.instOrderBot.{u1, u2} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) _inst_2 _inst_3) i p) (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))))) r) (SeminormFamily.basisSets.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p))
+<too large>
Case conversion may be inaccurate. Consider using '#align seminorm_family.basis_sets_mem SeminormFamily.basisSets_memβ'. -/
theorem basisSets_mem (i : Finset ΞΉ) {r : β} (hr : 0 < r) : (i.sup p).ball 0 r β p.basis_sets :=
(basisSets_iff _).mpr β¨i, _, hr, rflβ©
@@ -201,10 +195,7 @@ protected def addGroupFilterBasis [Nonempty ΞΉ] : AddGroupFilterBasis E :=
-/
/- warning: seminorm_family.basis_sets_smul_right -> SeminormFamily.basisSets_smul_right is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] (p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3) (v : E) (U : Set.{u2} E), (Membership.Mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.hasMem.{u2} (Set.{u2} E)) U (SeminormFamily.basisSets.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) -> (Filter.Eventually.{u1} π (fun (x : π) => Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) (SMul.smul.{u1, u2} π E (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) x v) U) (nhds.{u1} π (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (OfNat.ofNat.{u1} π 0 (OfNat.mk.{u1} π 0 (Zero.zero.{u1} π (MulZeroClass.toHasZero.{u1} π (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π (NonAssocRing.toNonUnitalNonAssocRing.{u1} π (Ring.toNonAssocRing.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))))))))
-but is expected to have type
- forall {π : Type.{u2}} {E : Type.{u3}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u2} π] [_inst_2 : AddCommGroup.{u3} E] [_inst_3 : Module.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] (p : SeminormFamily.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3) (v : E) (U : Set.{u3} E), (Membership.mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.instMembershipSet.{u3} (Set.{u3} E)) U (SeminormFamily.basisSets.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) -> (Filter.Eventually.{u2} π (fun (x : π) => Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) (HSMul.hSMul.{u2, u3, u3} π E E (instHSMul.{u2, u3} π E (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) x v) U) (nhds.{u2} π (UniformSpace.toTopologicalSpace.{u2} π (PseudoMetricSpace.toUniformSpace.{u2} π (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1)))))) (OfNat.ofNat.{u2} π 0 (Zero.toOfNat0.{u2} π (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))))))))
+<too large>
Case conversion may be inaccurate. Consider using '#align seminorm_family.basis_sets_smul_right SeminormFamily.basisSets_smul_rightβ'. -/
theorem basisSets_smul_right (v : E) (U : Set E) (hU : U β p.basis_sets) :
βαΆ x : π in π 0, x β’ v β U :=
@@ -223,10 +214,7 @@ theorem basisSets_smul_right (v : E) (U : Set E) (hU : U β p.basis_sets) :
variable [Nonempty ΞΉ]
/- warning: seminorm_family.basis_sets_smul -> SeminormFamily.basisSets_smul is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] (p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3) [_inst_4 : Nonempty.{succ u3} ΞΉ] (U : Set.{u2} E), (Membership.Mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.hasMem.{u2} (Set.{u2} E)) U (SeminormFamily.basisSets.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) -> (Exists.{succ u1} (Set.{u1} π) (fun (V : Set.{u1} π) => Exists.{0} (Membership.Mem.{u1, u1} (Set.{u1} π) (Filter.{u1} π) (Filter.hasMem.{u1} π) V (nhds.{u1} π (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (OfNat.ofNat.{u1} π 0 (OfNat.mk.{u1} π 0 (Zero.zero.{u1} π (MulZeroClass.toHasZero.{u1} π (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π (NonAssocRing.toNonUnitalNonAssocRing.{u1} π (Ring.toNonAssocRing.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))))))) (fun (H : Membership.Mem.{u1, u1} (Set.{u1} π) (Filter.{u1} π) (Filter.hasMem.{u1} π) V (nhds.{u1} π (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (OfNat.ofNat.{u1} π 0 (OfNat.mk.{u1} π 0 (Zero.zero.{u1} π (MulZeroClass.toHasZero.{u1} π (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π (NonAssocRing.toNonUnitalNonAssocRing.{u1} π (Ring.toNonAssocRing.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))))))) => Exists.{succ u2} (Set.{u2} E) (fun (W : Set.{u2} E) => Exists.{0} (Membership.Mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.hasMem.{u2} (Set.{u2} E)) W (FilterBasis.sets.{u2} E (AddGroupFilterBasis.toFilterBasis.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2) (SeminormFamily.addGroupFilterBasis.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p _inst_4)))) (fun (H : Membership.Mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.hasMem.{u2} (Set.{u2} E)) W (FilterBasis.sets.{u2} E (AddGroupFilterBasis.toFilterBasis.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2) (SeminormFamily.addGroupFilterBasis.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p _inst_4)))) => HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) (SMul.smul.{u1, u2} (Set.{u1} π) (Set.{u2} E) (Set.smul.{u1, u2} π E (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) V W) U)))))
-but is expected to have type
- forall {π : Type.{u2}} {E : Type.{u3}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u2} π] [_inst_2 : AddCommGroup.{u3} E] [_inst_3 : Module.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] (p : SeminormFamily.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3) [_inst_4 : Nonempty.{succ u1} ΞΉ] (U : Set.{u3} E), (Membership.mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.instMembershipSet.{u3} (Set.{u3} E)) U (SeminormFamily.basisSets.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) -> (Exists.{succ u2} (Set.{u2} π) (fun (V : Set.{u2} π) => And (Membership.mem.{u2, u2} (Set.{u2} π) (Filter.{u2} π) (instMembershipSetFilter.{u2} π) V (nhds.{u2} π (UniformSpace.toTopologicalSpace.{u2} π (PseudoMetricSpace.toUniformSpace.{u2} π (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1)))))) (OfNat.ofNat.{u2} π 0 (Zero.toOfNat0.{u2} π (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))))))) (Exists.{succ u3} (Set.{u3} E) (fun (W : Set.{u3} E) => And (Membership.mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.instMembershipSet.{u3} (Set.{u3} E)) W (FilterBasis.sets.{u3} E (AddGroupFilterBasis.toFilterBasis.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_2) (SeminormFamily.addGroupFilterBasis.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 p _inst_4)))) (HasSubset.Subset.{u3} (Set.{u3} E) (Set.instHasSubsetSet.{u3} E) (HSMul.hSMul.{u2, u3, u3} (Set.{u2} π) (Set.{u3} E) (Set.{u3} E) (instHSMul.{u2, u3} (Set.{u2} π) (Set.{u3} E) (Set.smul.{u2, u3} π E (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3)))))) V W) U)))))
+<too large>
Case conversion may be inaccurate. Consider using '#align seminorm_family.basis_sets_smul SeminormFamily.basisSets_smulβ'. -/
theorem basisSets_smul (U) (hU : U β p.basis_sets) :
β (V : Set π)(H : V β π (0 : π))(W : Set E)(H : W β p.AddGroupFilterBasis.sets), V β’ W β U :=
@@ -239,10 +227,7 @@ theorem basisSets_smul (U) (hU : U β p.basis_sets) :
#align seminorm_family.basis_sets_smul SeminormFamily.basisSets_smul
/- warning: seminorm_family.basis_sets_smul_left -> SeminormFamily.basisSets_smul_left is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] (p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3) [_inst_4 : Nonempty.{succ u3} ΞΉ] (x : π) (U : Set.{u2} E), (Membership.Mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.hasMem.{u2} (Set.{u2} E)) U (SeminormFamily.basisSets.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) -> (Exists.{succ u2} (Set.{u2} E) (fun (V : Set.{u2} E) => Exists.{0} (Membership.Mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.hasMem.{u2} (Set.{u2} E)) V (FilterBasis.sets.{u2} E (AddGroupFilterBasis.toFilterBasis.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2) (SeminormFamily.addGroupFilterBasis.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p _inst_4)))) (fun (H : Membership.Mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.hasMem.{u2} (Set.{u2} E)) V (FilterBasis.sets.{u2} E (AddGroupFilterBasis.toFilterBasis.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2) (SeminormFamily.addGroupFilterBasis.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p _inst_4)))) => HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) V (Set.preimage.{u2, u2} E E (fun (y : E) => SMul.smul.{u1, u2} π E (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) x y) U))))
-but is expected to have type
- forall {π : Type.{u2}} {E : Type.{u3}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u2} π] [_inst_2 : AddCommGroup.{u3} E] [_inst_3 : Module.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] (p : SeminormFamily.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3) [_inst_4 : Nonempty.{succ u1} ΞΉ] (x : π) (U : Set.{u3} E), (Membership.mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.instMembershipSet.{u3} (Set.{u3} E)) U (SeminormFamily.basisSets.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) -> (Exists.{succ u3} (Set.{u3} E) (fun (V : Set.{u3} E) => And (Membership.mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.instMembershipSet.{u3} (Set.{u3} E)) V (FilterBasis.sets.{u3} E (AddGroupFilterBasis.toFilterBasis.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_2) (SeminormFamily.addGroupFilterBasis.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 p _inst_4)))) (HasSubset.Subset.{u3} (Set.{u3} E) (Set.instHasSubsetSet.{u3} E) V (Set.preimage.{u3, u3} E E (fun (y : E) => HSMul.hSMul.{u2, u3, u3} π E E (instHSMul.{u2, u3} π E (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) x y) U))))
+<too large>
Case conversion may be inaccurate. Consider using '#align seminorm_family.basis_sets_smul_left SeminormFamily.basisSets_smul_leftβ'. -/
theorem basisSets_smul_left (x : π) (U : Set E) (hU : U β p.basis_sets) :
β (V : Set E)(H : V β p.AddGroupFilterBasis.sets), V β (fun y : E => x β’ y) β»ΒΉ' U :=
@@ -270,10 +255,7 @@ protected def moduleFilterBasis : ModuleFilterBasis π E
-/
/- warning: seminorm_family.filter_eq_infi -> SeminormFamily.filter_eq_iInf is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u3} ΞΉ] (p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3), Eq.{succ u2} (Filter.{u2} E) (FilterBasis.filter.{u2} E (AddGroupFilterBasis.toFilterBasis.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2) (ModuleFilterBasis.toAddGroupFilterBasis.{u1, u2} π E (SeminormedCommRing.toCommRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) _inst_2 _inst_3 (SeminormFamily.moduleFilterBasis.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p _inst_4)))) (iInf.{u2, succ u3} (Filter.{u2} E) (ConditionallyCompleteLattice.toHasInf.{u2} (Filter.{u2} E) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} E) (Filter.completeLattice.{u2} E))) ΞΉ (fun (i : ΞΉ) => Filter.comap.{u2, 0} E Real (coeFn.{succ u2, succ u2} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (fun (_x : Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) => E -> Real) (Seminorm.hasCoeToFun.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (p i)) (nhds.{0} Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))))))
-but is expected to have type
- forall {π : Type.{u3}} {E : Type.{u2}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u3} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u1} ΞΉ] (p : SeminormFamily.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3), Eq.{succ u2} (Filter.{u2} E) (FilterBasis.filter.{u2} E (AddGroupFilterBasis.toFilterBasis.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2) (ModuleFilterBasis.toAddGroupFilterBasis.{u3, u2} π E (EuclideanDomain.toCommRing.{u3} π (Field.toEuclideanDomain.{u3} π (NormedField.toField.{u3} π _inst_1))) (UniformSpace.toTopologicalSpace.{u3} π (PseudoMetricSpace.toUniformSpace.{u3} π (SeminormedRing.toPseudoMetricSpace.{u3} π (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1)))))) _inst_2 _inst_3 (SeminormFamily.moduleFilterBasis.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 p _inst_4)))) (iInf.{u2, succ u1} (Filter.{u2} E) (ConditionallyCompleteLattice.toInfSet.{u2} (Filter.{u2} E) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} E) (Filter.instCompleteLatticeFilter.{u2} E))) ΞΉ (fun (i : ΞΉ) => Filter.comap.{u2, 0} E Real (FunLike.coe.{succ u2, succ u2, 1} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) E (fun (_x : E) => (fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) _x) (SubadditiveHomClass.toFunLike.{u2, u2, 0} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) E Real (AddZeroClass.toAdd.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real (AddCommMonoid.toAddMonoid.{0} Real (OrderedAddCommMonoid.toAddCommMonoid.{0} Real Real.orderedAddCommMonoid)))) (Preorder.toLE.{0} Real (PartialOrder.toPreorder.{0} Real (OrderedAddCommMonoid.toPartialOrder.{0} Real Real.orderedAddCommMonoid))) (AddGroupSeminormClass.toAddLEAddHomClass.{u2, u2, 0} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) E Real (AddCommGroup.toAddGroup.{u2} E _inst_2) Real.orderedAddCommMonoid (SeminormClass.toAddGroupSeminormClass.{u2, u3, u2} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (Seminorm.instSeminormClass.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))))))) (p i)) (nhds.{0} Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)))))
+<too large>
Case conversion may be inaccurate. Consider using '#align seminorm_family.filter_eq_infi SeminormFamily.filter_eq_iInfβ'. -/
theorem filter_eq_iInf (p : SeminormFamily π E ΞΉ) :
p.ModuleFilterBasis.toFilterBasis.filterβ = β¨
i, (π 0).comap (p i) :=
@@ -319,10 +301,7 @@ def IsBounded (p : ΞΉ β Seminorm π E) (q : ΞΉ' β Seminorm πβ F) (f :
-/
/- warning: seminorm.is_bounded_const -> Seminorm.isBounded_const is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {πβ : Type.{u2}} {E : Type.{u3}} {F : Type.{u4}} {ΞΉ : Type.{u5}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u3} E] [_inst_3 : Module.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] [_inst_4 : NormedField.{u2} πβ] [_inst_5 : AddCommGroup.{u4} F] [_inst_6 : Module.{u2, u4} πβ F (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)] {Οββ : RingHom.{u1, u2} π πβ (NonAssocRing.toNonAssocSemiring.{u1} π (Ring.toNonAssocRing.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} πβ (Ring.toNonAssocRing.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))))} [_inst_7 : RingHomIsometric.{u1, u2} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) (NormedField.toHasNorm.{u1} π _inst_1) (NormedField.toHasNorm.{u2} πβ _inst_4) Οββ] (ΞΉ' : Type.{u6}) [_inst_8 : Nonempty.{succ u6} ΞΉ'] {p : ΞΉ -> (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3)))))} {q : Seminorm.{u2, u4} πβ F (SeminormedCommRing.toSemiNormedRing.{u2} πβ (NormedCommRing.toSeminormedCommRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4))) (AddCommGroup.toAddGroup.{u4} F _inst_5) (SMulZeroClass.toHasSmul.{u2, u4} πβ F (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)))) (SMulWithZero.toSmulZeroClass.{u2, u4} πβ F (MulZeroClass.toHasZero.{u2} πβ (MulZeroOneClass.toMulZeroClass.{u2} πβ (MonoidWithZero.toMulZeroOneClass.{u2} πβ (Semiring.toMonoidWithZero.{u2} πβ (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)))) (MulActionWithZero.toSMulWithZero.{u2, u4} πβ F (Semiring.toMonoidWithZero.{u2} πβ (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)))) (Module.toMulActionWithZero.{u2, u4} πβ F (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5) _inst_6))))} (f : LinearMap.{u1, u2, u3, u4} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5) _inst_3 _inst_6), Iff (Seminorm.IsBounded.{u1, u2, u3, u4, u5, u6} π πβ E F ΞΉ ΞΉ' _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 Οββ _inst_7 p (fun (_x : ΞΉ') => q) f) (Exists.{succ u5} (Finset.{u5} ΞΉ) (fun (s : Finset.{u5} ΞΉ) => Exists.{1} NNReal (fun (C : NNReal) => LE.le.{u3} (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) (Preorder.toHasLe.{u3} (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) (PartialOrder.toPreorder.{u3} (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) (Seminorm.partialOrder.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))))) (Seminorm.comp.{u1, u2, u3, u4} π πβ E F (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (SeminormedCommRing.toSemiNormedRing.{u2} πβ (NormedCommRing.toSeminormedCommRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4))) Οββ _inst_7 _inst_2 _inst_5 _inst_3 _inst_6 q f) (SMul.smul.{0, u3} NNReal (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) (Seminorm.hasSmul.{0, u1, u3} NNReal π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3)))) (MulAction.toHasSmul.{0, 0} NNReal Real (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal NNReal.semiring)) (NNReal.mulAction.{0} Real (Monoid.toMulAction.{0} Real Real.monoid))) (Mul.toSMul.{0} NNReal (MulOneClass.toHasMul.{0} NNReal (Monoid.toMulOneClass.{0} NNReal (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal NNReal.semiring))))) (IsScalarTower.left.{0, 0} NNReal Real (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal NNReal.semiring)) (NNReal.mulAction.{0} Real (Monoid.toMulAction.{0} Real Real.monoid)))) C (Finset.sup.{u3, u5} (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) ΞΉ (Seminorm.semilatticeSup.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) (Seminorm.orderBot.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) _inst_2 _inst_3) s p)))))
-but is expected to have type
- forall {π : Type.{u5}} {πβ : Type.{u3}} {E : Type.{u4}} {F : Type.{u2}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u5} π] [_inst_2 : AddCommGroup.{u4} E] [_inst_3 : Module.{u5, u4} π E (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} E _inst_2)] [_inst_4 : NormedField.{u3} πβ] [_inst_5 : AddCommGroup.{u2} F] [_inst_6 : Module.{u3, u2} πβ F (DivisionSemiring.toSemiring.{u3} πβ (Semifield.toDivisionSemiring.{u3} πβ (Field.toSemifield.{u3} πβ (NormedField.toField.{u3} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F _inst_5)] {Οββ : RingHom.{u5, u3} π πβ (Semiring.toNonAssocSemiring.{u5} π (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (Semiring.toNonAssocSemiring.{u3} πβ (DivisionSemiring.toSemiring.{u3} πβ (Semifield.toDivisionSemiring.{u3} πβ (Field.toSemifield.{u3} πβ (NormedField.toField.{u3} πβ _inst_4)))))} [_inst_7 : RingHomIsometric.{u5, u3} π πβ (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1)))) (DivisionSemiring.toSemiring.{u3} πβ (Semifield.toDivisionSemiring.{u3} πβ (Field.toSemifield.{u3} πβ (NormedField.toField.{u3} πβ _inst_4)))) (NormedField.toNorm.{u5} π _inst_1) (NormedField.toNorm.{u3} πβ _inst_4) Οββ] (ΞΉ' : Type.{u6}) [_inst_8 : Nonempty.{succ u6} ΞΉ'] {p : ΞΉ -> (Seminorm.{u5, u4} π E (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))) (AddCommGroup.toAddGroup.{u4} E _inst_2) (SMulZeroClass.toSMul.{u5, u4} π E (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u5, u4} π E (CommMonoidWithZero.toZero.{u5} π (CommGroupWithZero.toCommMonoidWithZero.{u5} π (Semifield.toCommGroupWithZero.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u5, u4} π E (Semiring.toMonoidWithZero.{u5} π (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (Module.toMulActionWithZero.{u5, u4} π E (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} E _inst_2) _inst_3)))))} {q : Seminorm.{u3, u2} πβ F (SeminormedCommRing.toSeminormedRing.{u3} πβ (NormedCommRing.toSeminormedCommRing.{u3} πβ (NormedField.toNormedCommRing.{u3} πβ _inst_4))) (AddCommGroup.toAddGroup.{u2} F _inst_5) (SMulZeroClass.toSMul.{u3, u2} πβ F (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F _inst_5))))) (SMulWithZero.toSMulZeroClass.{u3, u2} πβ F (CommMonoidWithZero.toZero.{u3} πβ (CommGroupWithZero.toCommMonoidWithZero.{u3} πβ (Semifield.toCommGroupWithZero.{u3} πβ (Field.toSemifield.{u3} πβ (NormedField.toField.{u3} πβ _inst_4))))) (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F _inst_5))))) (MulActionWithZero.toSMulWithZero.{u3, u2} πβ F (Semiring.toMonoidWithZero.{u3} πβ (DivisionSemiring.toSemiring.{u3} πβ (Semifield.toDivisionSemiring.{u3} πβ (Field.toSemifield.{u3} πβ (NormedField.toField.{u3} πβ _inst_4))))) (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F _inst_5))))) (Module.toMulActionWithZero.{u3, u2} πβ F (DivisionSemiring.toSemiring.{u3} πβ (Semifield.toDivisionSemiring.{u3} πβ (Field.toSemifield.{u3} πβ (NormedField.toField.{u3} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F _inst_5) _inst_6))))} (f : LinearMap.{u5, u3, u4, u2} π πβ (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1)))) (DivisionSemiring.toSemiring.{u3} πβ (Semifield.toDivisionSemiring.{u3} πβ (Field.toSemifield.{u3} πβ (NormedField.toField.{u3} πβ _inst_4)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u4} E _inst_2) (AddCommGroup.toAddCommMonoid.{u2} F _inst_5) _inst_3 _inst_6), Iff (Seminorm.IsBounded.{u5, u3, u4, u2, u1, u6} π πβ E F ΞΉ ΞΉ' _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 Οββ _inst_7 p (fun (_x : ΞΉ') => q) f) (Exists.{succ u1} (Finset.{u1} ΞΉ) (fun (s : Finset.{u1} ΞΉ) => Exists.{1} NNReal (fun (C : NNReal) => LE.le.{u4} (Seminorm.{u5, u4} π E (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))) (AddCommGroup.toAddGroup.{u4} E _inst_2) (SMulZeroClass.toSMul.{u5, u4} π E (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u5, u4} π E (MonoidWithZero.toZero.{u5} π (Semiring.toMonoidWithZero.{u5} π (Ring.toSemiring.{u5} π (SeminormedRing.toRing.{u5} π (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u5, u4} π E (Semiring.toMonoidWithZero.{u5} π (Ring.toSemiring.{u5} π (SeminormedRing.toRing.{u5} π (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1)))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (Module.toMulActionWithZero.{u5, u4} π E (Ring.toSemiring.{u5} π (SeminormedRing.toRing.{u5} π (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u4} E _inst_2) _inst_3))))) (Preorder.toLE.{u4} (Seminorm.{u5, u4} π E (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))) (AddCommGroup.toAddGroup.{u4} E _inst_2) (SMulZeroClass.toSMul.{u5, u4} π E (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u5, u4} π E (MonoidWithZero.toZero.{u5} π (Semiring.toMonoidWithZero.{u5} π (Ring.toSemiring.{u5} π (SeminormedRing.toRing.{u5} π (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u5, u4} π E (Semiring.toMonoidWithZero.{u5} π (Ring.toSemiring.{u5} π (SeminormedRing.toRing.{u5} π (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1)))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (Module.toMulActionWithZero.{u5, u4} π E (Ring.toSemiring.{u5} π (SeminormedRing.toRing.{u5} π (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u4} E _inst_2) _inst_3))))) (PartialOrder.toPreorder.{u4} (Seminorm.{u5, u4} π E (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))) (AddCommGroup.toAddGroup.{u4} E _inst_2) (SMulZeroClass.toSMul.{u5, u4} π E (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u5, u4} π E (MonoidWithZero.toZero.{u5} π (Semiring.toMonoidWithZero.{u5} π (Ring.toSemiring.{u5} π (SeminormedRing.toRing.{u5} π (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u5, u4} π E (Semiring.toMonoidWithZero.{u5} π (Ring.toSemiring.{u5} π (SeminormedRing.toRing.{u5} π (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1)))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (Module.toMulActionWithZero.{u5, u4} π E (Ring.toSemiring.{u5} π (SeminormedRing.toRing.{u5} π (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u4} E _inst_2) _inst_3))))) (Seminorm.instPartialOrder.{u5, u4} π E (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))) (AddCommGroup.toAddGroup.{u4} E _inst_2) (SMulZeroClass.toSMul.{u5, u4} π E (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u5, u4} π E (MonoidWithZero.toZero.{u5} π (Semiring.toMonoidWithZero.{u5} π (Ring.toSemiring.{u5} π (SeminormedRing.toRing.{u5} π (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u5, u4} π E (Semiring.toMonoidWithZero.{u5} π (Ring.toSemiring.{u5} π (SeminormedRing.toRing.{u5} π (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1)))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (Module.toMulActionWithZero.{u5, u4} π E (Ring.toSemiring.{u5} π (SeminormedRing.toRing.{u5} π (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u4} E _inst_2) _inst_3))))))) (Seminorm.comp.{u5, u3, u4, u2} π πβ E F (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))) (SeminormedCommRing.toSeminormedRing.{u3} πβ (NormedCommRing.toSeminormedCommRing.{u3} πβ (NormedField.toNormedCommRing.{u3} πβ _inst_4))) Οββ _inst_7 _inst_2 _inst_5 _inst_3 _inst_6 q f) (HSMul.hSMul.{0, u4, u4} NNReal (Seminorm.{u5, u4} π E (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))) (AddCommGroup.toAddGroup.{u4} E _inst_2) (SMulZeroClass.toSMul.{u5, u4} π E (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u5, u4} π E (CommMonoidWithZero.toZero.{u5} π (CommGroupWithZero.toCommMonoidWithZero.{u5} π (Semifield.toCommGroupWithZero.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u5, u4} π E (Semiring.toMonoidWithZero.{u5} π (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (Module.toMulActionWithZero.{u5, u4} π E (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} E _inst_2) _inst_3))))) (Seminorm.{u5, u4} π E (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))) (AddCommGroup.toAddGroup.{u4} E _inst_2) (SMulZeroClass.toSMul.{u5, u4} π E (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u5, u4} π E (CommMonoidWithZero.toZero.{u5} π (CommGroupWithZero.toCommMonoidWithZero.{u5} π (Semifield.toCommGroupWithZero.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u5, u4} π E (Semiring.toMonoidWithZero.{u5} π (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (Module.toMulActionWithZero.{u5, u4} π E (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} E _inst_2) _inst_3))))) (instHSMul.{0, u4} NNReal (Seminorm.{u5, u4} π E (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))) (AddCommGroup.toAddGroup.{u4} E _inst_2) (SMulZeroClass.toSMul.{u5, u4} π E (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u5, u4} π E (CommMonoidWithZero.toZero.{u5} π (CommGroupWithZero.toCommMonoidWithZero.{u5} π (Semifield.toCommGroupWithZero.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u5, u4} π E (Semiring.toMonoidWithZero.{u5} π (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (Module.toMulActionWithZero.{u5, u4} π E (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} E _inst_2) _inst_3))))) (Seminorm.instSMul.{0, u5, u4} NNReal π E (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))) (AddCommGroup.toAddGroup.{u4} E _inst_2) (SMulZeroClass.toSMul.{u5, u4} π E (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u5, u4} π E (CommMonoidWithZero.toZero.{u5} π (CommGroupWithZero.toCommMonoidWithZero.{u5} π (Semifield.toCommGroupWithZero.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u5, u4} π E (Semiring.toMonoidWithZero.{u5} π (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (Module.toMulActionWithZero.{u5, u4} π E (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} E _inst_2) _inst_3)))) Seminorm.smul_nnreal_real (Algebra.toSMul.{0, 0} NNReal NNReal instNNRealCommSemiring instNNRealSemiring (Algebra.id.{0} NNReal instNNRealCommSemiring)) (IsScalarTower.left.{0, 0} NNReal Real (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal instNNRealSemiring)) (NNReal.instMulActionNNRealToMonoidToMonoidWithZeroInstNNRealSemiring.{0} Real (MulActionWithZero.toMulAction.{0, 0} Real Real Real.instMonoidWithZeroReal Real.instZeroReal (MonoidWithZero.toMulActionWithZero.{0} Real Real.instMonoidWithZeroReal)))))) C (Finset.sup.{u4, u1} (Seminorm.{u5, u4} π E (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))) (AddCommGroup.toAddGroup.{u4} E _inst_2) (SMulZeroClass.toSMul.{u5, u4} π E (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u5, u4} π E (CommMonoidWithZero.toZero.{u5} π (CommGroupWithZero.toCommMonoidWithZero.{u5} π (Semifield.toCommGroupWithZero.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u5, u4} π E (Semiring.toMonoidWithZero.{u5} π (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (Module.toMulActionWithZero.{u5, u4} π E (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} E _inst_2) _inst_3))))) ΞΉ (Seminorm.instSemilatticeSup.{u5, u4} π E (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))) (AddCommGroup.toAddGroup.{u4} E _inst_2) (SMulZeroClass.toSMul.{u5, u4} π E (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u5, u4} π E (CommMonoidWithZero.toZero.{u5} π (CommGroupWithZero.toCommMonoidWithZero.{u5} π (Semifield.toCommGroupWithZero.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u5, u4} π E (Semiring.toMonoidWithZero.{u5} π (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (Module.toMulActionWithZero.{u5, u4} π E (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} E _inst_2) _inst_3))))) (Seminorm.instOrderBot.{u5, u4} π E (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))) _inst_2 _inst_3) s p)))))
+<too large>
Case conversion may be inaccurate. Consider using '#align seminorm.is_bounded_const Seminorm.isBounded_constβ'. -/
theorem isBounded_const (ΞΉ' : Type _) [Nonempty ΞΉ'] {p : ΞΉ β Seminorm π E} {q : Seminorm πβ F}
(f : E βββ[Οββ] F) :
@@ -331,10 +310,7 @@ theorem isBounded_const (ΞΉ' : Type _) [Nonempty ΞΉ'] {p : ΞΉ β Seminorm π
#align seminorm.is_bounded_const Seminorm.isBounded_const
/- warning: seminorm.const_is_bounded -> Seminorm.const_isBounded is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {πβ : Type.{u2}} {E : Type.{u3}} {F : Type.{u4}} {ΞΉ' : Type.{u5}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u3} E] [_inst_3 : Module.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] [_inst_4 : NormedField.{u2} πβ] [_inst_5 : AddCommGroup.{u4} F] [_inst_6 : Module.{u2, u4} πβ F (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)] {Οββ : RingHom.{u1, u2} π πβ (NonAssocRing.toNonAssocSemiring.{u1} π (Ring.toNonAssocRing.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} πβ (Ring.toNonAssocRing.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))))} [_inst_7 : RingHomIsometric.{u1, u2} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) (NormedField.toHasNorm.{u1} π _inst_1) (NormedField.toHasNorm.{u2} πβ _inst_4) Οββ] (ΞΉ : Type.{u6}) [_inst_8 : Nonempty.{succ u6} ΞΉ] {p : Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))} {q : ΞΉ' -> (Seminorm.{u2, u4} πβ F (SeminormedCommRing.toSemiNormedRing.{u2} πβ (NormedCommRing.toSeminormedCommRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4))) (AddCommGroup.toAddGroup.{u4} F _inst_5) (SMulZeroClass.toHasSmul.{u2, u4} πβ F (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)))) (SMulWithZero.toSmulZeroClass.{u2, u4} πβ F (MulZeroClass.toHasZero.{u2} πβ (MulZeroOneClass.toMulZeroClass.{u2} πβ (MonoidWithZero.toMulZeroOneClass.{u2} πβ (Semiring.toMonoidWithZero.{u2} πβ (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)))) (MulActionWithZero.toSMulWithZero.{u2, u4} πβ F (Semiring.toMonoidWithZero.{u2} πβ (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)))) (Module.toMulActionWithZero.{u2, u4} πβ F (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5) _inst_6)))))} (f : LinearMap.{u1, u2, u3, u4} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5) _inst_3 _inst_6), Iff (Seminorm.IsBounded.{u1, u2, u3, u4, u6, u5} π πβ E F ΞΉ ΞΉ' _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 Οββ _inst_7 (fun (_x : ΞΉ) => p) q f) (forall (i : ΞΉ'), Exists.{1} NNReal (fun (C : NNReal) => LE.le.{u3} (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) (Preorder.toHasLe.{u3} (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) (PartialOrder.toPreorder.{u3} (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) (Seminorm.partialOrder.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))))) (Seminorm.comp.{u1, u2, u3, u4} π πβ E F (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (SeminormedCommRing.toSemiNormedRing.{u2} πβ (NormedCommRing.toSeminormedCommRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4))) Οββ _inst_7 _inst_2 _inst_5 _inst_3 _inst_6 (q i) f) (SMul.smul.{0, u3} NNReal (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) (Seminorm.hasSmul.{0, u1, u3} NNReal π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3)))) (MulAction.toHasSmul.{0, 0} NNReal Real (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal NNReal.semiring)) (NNReal.mulAction.{0} Real (Monoid.toMulAction.{0} Real Real.monoid))) (Mul.toSMul.{0} NNReal (MulOneClass.toHasMul.{0} NNReal (Monoid.toMulOneClass.{0} NNReal (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal NNReal.semiring))))) (IsScalarTower.left.{0, 0} NNReal Real (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal NNReal.semiring)) (NNReal.mulAction.{0} Real (Monoid.toMulAction.{0} Real Real.monoid)))) C p)))
-but is expected to have type
- forall {π : Type.{u5}} {πβ : Type.{u3}} {E : Type.{u4}} {F : Type.{u2}} {ΞΉ' : Type.{u1}} [_inst_1 : NormedField.{u5} π] [_inst_2 : AddCommGroup.{u4} E] [_inst_3 : Module.{u5, u4} π E (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} E _inst_2)] [_inst_4 : NormedField.{u3} πβ] [_inst_5 : AddCommGroup.{u2} F] [_inst_6 : Module.{u3, u2} πβ F (DivisionSemiring.toSemiring.{u3} πβ (Semifield.toDivisionSemiring.{u3} πβ (Field.toSemifield.{u3} πβ (NormedField.toField.{u3} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F _inst_5)] {Οββ : RingHom.{u5, u3} π πβ (Semiring.toNonAssocSemiring.{u5} π (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (Semiring.toNonAssocSemiring.{u3} πβ (DivisionSemiring.toSemiring.{u3} πβ (Semifield.toDivisionSemiring.{u3} πβ (Field.toSemifield.{u3} πβ (NormedField.toField.{u3} πβ _inst_4)))))} [_inst_7 : RingHomIsometric.{u5, u3} π πβ (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1)))) (DivisionSemiring.toSemiring.{u3} πβ (Semifield.toDivisionSemiring.{u3} πβ (Field.toSemifield.{u3} πβ (NormedField.toField.{u3} πβ _inst_4)))) (NormedField.toNorm.{u5} π _inst_1) (NormedField.toNorm.{u3} πβ _inst_4) Οββ] (ΞΉ : Type.{u6}) [_inst_8 : Nonempty.{succ u6} ΞΉ] {p : Seminorm.{u5, u4} π E (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))) (AddCommGroup.toAddGroup.{u4} E _inst_2) (SMulZeroClass.toSMul.{u5, u4} π E (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u5, u4} π E (CommMonoidWithZero.toZero.{u5} π (CommGroupWithZero.toCommMonoidWithZero.{u5} π (Semifield.toCommGroupWithZero.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u5, u4} π E (Semiring.toMonoidWithZero.{u5} π (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (Module.toMulActionWithZero.{u5, u4} π E (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} E _inst_2) _inst_3))))} {q : ΞΉ' -> (Seminorm.{u3, u2} πβ F (SeminormedCommRing.toSeminormedRing.{u3} πβ (NormedCommRing.toSeminormedCommRing.{u3} πβ (NormedField.toNormedCommRing.{u3} πβ _inst_4))) (AddCommGroup.toAddGroup.{u2} F _inst_5) (SMulZeroClass.toSMul.{u3, u2} πβ F (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F _inst_5))))) (SMulWithZero.toSMulZeroClass.{u3, u2} πβ F (CommMonoidWithZero.toZero.{u3} πβ (CommGroupWithZero.toCommMonoidWithZero.{u3} πβ (Semifield.toCommGroupWithZero.{u3} πβ (Field.toSemifield.{u3} πβ (NormedField.toField.{u3} πβ _inst_4))))) (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F _inst_5))))) (MulActionWithZero.toSMulWithZero.{u3, u2} πβ F (Semiring.toMonoidWithZero.{u3} πβ (DivisionSemiring.toSemiring.{u3} πβ (Semifield.toDivisionSemiring.{u3} πβ (Field.toSemifield.{u3} πβ (NormedField.toField.{u3} πβ _inst_4))))) (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F _inst_5))))) (Module.toMulActionWithZero.{u3, u2} πβ F (DivisionSemiring.toSemiring.{u3} πβ (Semifield.toDivisionSemiring.{u3} πβ (Field.toSemifield.{u3} πβ (NormedField.toField.{u3} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F _inst_5) _inst_6)))))} (f : LinearMap.{u5, u3, u4, u2} π πβ (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1)))) (DivisionSemiring.toSemiring.{u3} πβ (Semifield.toDivisionSemiring.{u3} πβ (Field.toSemifield.{u3} πβ (NormedField.toField.{u3} πβ _inst_4)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u4} E _inst_2) (AddCommGroup.toAddCommMonoid.{u2} F _inst_5) _inst_3 _inst_6), Iff (Seminorm.IsBounded.{u5, u3, u4, u2, u6, u1} π πβ E F ΞΉ ΞΉ' _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 Οββ _inst_7 (fun (_x : ΞΉ) => p) q f) (forall (i : ΞΉ'), Exists.{1} NNReal (fun (C : NNReal) => LE.le.{u4} (Seminorm.{u5, u4} π E (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))) (AddCommGroup.toAddGroup.{u4} E _inst_2) (SMulZeroClass.toSMul.{u5, u4} π E (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u5, u4} π E (MonoidWithZero.toZero.{u5} π (Semiring.toMonoidWithZero.{u5} π (Ring.toSemiring.{u5} π (SeminormedRing.toRing.{u5} π (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u5, u4} π E (Semiring.toMonoidWithZero.{u5} π (Ring.toSemiring.{u5} π (SeminormedRing.toRing.{u5} π (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1)))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (Module.toMulActionWithZero.{u5, u4} π E (Ring.toSemiring.{u5} π (SeminormedRing.toRing.{u5} π (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u4} E _inst_2) _inst_3))))) (Preorder.toLE.{u4} (Seminorm.{u5, u4} π E (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))) (AddCommGroup.toAddGroup.{u4} E _inst_2) (SMulZeroClass.toSMul.{u5, u4} π E (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u5, u4} π E (MonoidWithZero.toZero.{u5} π (Semiring.toMonoidWithZero.{u5} π (Ring.toSemiring.{u5} π (SeminormedRing.toRing.{u5} π (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u5, u4} π E (Semiring.toMonoidWithZero.{u5} π (Ring.toSemiring.{u5} π (SeminormedRing.toRing.{u5} π (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1)))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (Module.toMulActionWithZero.{u5, u4} π E (Ring.toSemiring.{u5} π (SeminormedRing.toRing.{u5} π (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u4} E _inst_2) _inst_3))))) (PartialOrder.toPreorder.{u4} (Seminorm.{u5, u4} π E (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))) (AddCommGroup.toAddGroup.{u4} E _inst_2) (SMulZeroClass.toSMul.{u5, u4} π E (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u5, u4} π E (MonoidWithZero.toZero.{u5} π (Semiring.toMonoidWithZero.{u5} π (Ring.toSemiring.{u5} π (SeminormedRing.toRing.{u5} π (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u5, u4} π E (Semiring.toMonoidWithZero.{u5} π (Ring.toSemiring.{u5} π (SeminormedRing.toRing.{u5} π (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1)))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (Module.toMulActionWithZero.{u5, u4} π E (Ring.toSemiring.{u5} π (SeminormedRing.toRing.{u5} π (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u4} E _inst_2) _inst_3))))) (Seminorm.instPartialOrder.{u5, u4} π E (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))) (AddCommGroup.toAddGroup.{u4} E _inst_2) (SMulZeroClass.toSMul.{u5, u4} π E (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u5, u4} π E (MonoidWithZero.toZero.{u5} π (Semiring.toMonoidWithZero.{u5} π (Ring.toSemiring.{u5} π (SeminormedRing.toRing.{u5} π (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u5, u4} π E (Semiring.toMonoidWithZero.{u5} π (Ring.toSemiring.{u5} π (SeminormedRing.toRing.{u5} π (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1)))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (Module.toMulActionWithZero.{u5, u4} π E (Ring.toSemiring.{u5} π (SeminormedRing.toRing.{u5} π (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u4} E _inst_2) _inst_3))))))) (Seminorm.comp.{u5, u3, u4, u2} π πβ E F (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))) (SeminormedCommRing.toSeminormedRing.{u3} πβ (NormedCommRing.toSeminormedCommRing.{u3} πβ (NormedField.toNormedCommRing.{u3} πβ _inst_4))) Οββ _inst_7 _inst_2 _inst_5 _inst_3 _inst_6 (q i) f) (HSMul.hSMul.{0, u4, u4} NNReal (Seminorm.{u5, u4} π E (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))) (AddCommGroup.toAddGroup.{u4} E _inst_2) (SMulZeroClass.toSMul.{u5, u4} π E (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u5, u4} π E (CommMonoidWithZero.toZero.{u5} π (CommGroupWithZero.toCommMonoidWithZero.{u5} π (Semifield.toCommGroupWithZero.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u5, u4} π E (Semiring.toMonoidWithZero.{u5} π (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (Module.toMulActionWithZero.{u5, u4} π E (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} E _inst_2) _inst_3))))) (Seminorm.{u5, u4} π E (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))) (AddCommGroup.toAddGroup.{u4} E _inst_2) (SMulZeroClass.toSMul.{u5, u4} π E (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u5, u4} π E (CommMonoidWithZero.toZero.{u5} π (CommGroupWithZero.toCommMonoidWithZero.{u5} π (Semifield.toCommGroupWithZero.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u5, u4} π E (Semiring.toMonoidWithZero.{u5} π (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (Module.toMulActionWithZero.{u5, u4} π E (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} E _inst_2) _inst_3))))) (instHSMul.{0, u4} NNReal (Seminorm.{u5, u4} π E (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))) (AddCommGroup.toAddGroup.{u4} E _inst_2) (SMulZeroClass.toSMul.{u5, u4} π E (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u5, u4} π E (CommMonoidWithZero.toZero.{u5} π (CommGroupWithZero.toCommMonoidWithZero.{u5} π (Semifield.toCommGroupWithZero.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u5, u4} π E (Semiring.toMonoidWithZero.{u5} π (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (Module.toMulActionWithZero.{u5, u4} π E (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} E _inst_2) _inst_3))))) (Seminorm.instSMul.{0, u5, u4} NNReal π E (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))) (AddCommGroup.toAddGroup.{u4} E _inst_2) (SMulZeroClass.toSMul.{u5, u4} π E (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u5, u4} π E (CommMonoidWithZero.toZero.{u5} π (CommGroupWithZero.toCommMonoidWithZero.{u5} π (Semifield.toCommGroupWithZero.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u5, u4} π E (Semiring.toMonoidWithZero.{u5} π (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (Module.toMulActionWithZero.{u5, u4} π E (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} E _inst_2) _inst_3)))) Seminorm.smul_nnreal_real (Algebra.toSMul.{0, 0} NNReal NNReal instNNRealCommSemiring instNNRealSemiring (Algebra.id.{0} NNReal instNNRealCommSemiring)) (IsScalarTower.left.{0, 0} NNReal Real (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal instNNRealSemiring)) (NNReal.instMulActionNNRealToMonoidToMonoidWithZeroInstNNRealSemiring.{0} Real (MulActionWithZero.toMulAction.{0, 0} Real Real Real.instMonoidWithZeroReal Real.instZeroReal (MonoidWithZero.toMulActionWithZero.{0} Real Real.instMonoidWithZeroReal)))))) C p)))
+<too large>
Case conversion may be inaccurate. Consider using '#align seminorm.const_is_bounded Seminorm.const_isBoundedβ'. -/
theorem const_isBounded (ΞΉ : Type _) [Nonempty ΞΉ] {p : Seminorm π E} {q : ΞΉ' β Seminorm πβ F}
(f : E βββ[Οββ] F) : IsBounded (fun _ : ΞΉ => p) q f β β i, β C : ββ₯0, (q i).comp f β€ C β’ p :=
@@ -347,10 +323,7 @@ theorem const_isBounded (ΞΉ : Type _) [Nonempty ΞΉ] {p : Seminorm π E} {q :
#align seminorm.const_is_bounded Seminorm.const_isBounded
/- warning: seminorm.is_bounded_sup -> Seminorm.isBounded_sup is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {πβ : Type.{u2}} {E : Type.{u3}} {F : Type.{u4}} {ΞΉ : Type.{u5}} {ΞΉ' : Type.{u6}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u3} E] [_inst_3 : Module.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] [_inst_4 : NormedField.{u2} πβ] [_inst_5 : AddCommGroup.{u4} F] [_inst_6 : Module.{u2, u4} πβ F (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)] {Οββ : RingHom.{u1, u2} π πβ (NonAssocRing.toNonAssocSemiring.{u1} π (Ring.toNonAssocRing.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} πβ (Ring.toNonAssocRing.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))))} [_inst_7 : RingHomIsometric.{u1, u2} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) (NormedField.toHasNorm.{u1} π _inst_1) (NormedField.toHasNorm.{u2} πβ _inst_4) Οββ] {p : ΞΉ -> (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3)))))} {q : ΞΉ' -> (Seminorm.{u2, u4} πβ F (SeminormedCommRing.toSemiNormedRing.{u2} πβ (NormedCommRing.toSeminormedCommRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4))) (AddCommGroup.toAddGroup.{u4} F _inst_5) (SMulZeroClass.toHasSmul.{u2, u4} πβ F (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)))) (SMulWithZero.toSmulZeroClass.{u2, u4} πβ F (MulZeroClass.toHasZero.{u2} πβ (MulZeroOneClass.toMulZeroClass.{u2} πβ (MonoidWithZero.toMulZeroOneClass.{u2} πβ (Semiring.toMonoidWithZero.{u2} πβ (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)))) (MulActionWithZero.toSMulWithZero.{u2, u4} πβ F (Semiring.toMonoidWithZero.{u2} πβ (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)))) (Module.toMulActionWithZero.{u2, u4} πβ F (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5) _inst_6)))))} {f : LinearMap.{u1, u2, u3, u4} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5) _inst_3 _inst_6}, (Seminorm.IsBounded.{u1, u2, u3, u4, u5, u6} π πβ E F ΞΉ ΞΉ' _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 Οββ _inst_7 p q f) -> (forall (s' : Finset.{u6} ΞΉ'), Exists.{1} NNReal (fun (C : NNReal) => Exists.{succ u5} (Finset.{u5} ΞΉ) (fun (s : Finset.{u5} ΞΉ) => LE.le.{u3} (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) (Preorder.toHasLe.{u3} (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) (PartialOrder.toPreorder.{u3} (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) (Seminorm.partialOrder.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))))) (Seminorm.comp.{u1, u2, u3, u4} π πβ E F (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (SeminormedCommRing.toSemiNormedRing.{u2} πβ (NormedCommRing.toSeminormedCommRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4))) Οββ _inst_7 _inst_2 _inst_5 _inst_3 _inst_6 (Finset.sup.{u4, u6} (Seminorm.{u2, u4} πβ F (SeminormedCommRing.toSemiNormedRing.{u2} πβ (NormedCommRing.toSeminormedCommRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4))) (AddCommGroup.toAddGroup.{u4} F _inst_5) (SMulZeroClass.toHasSmul.{u2, u4} πβ F (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)))) (SMulWithZero.toSmulZeroClass.{u2, u4} πβ F (MulZeroClass.toHasZero.{u2} πβ (MulZeroOneClass.toMulZeroClass.{u2} πβ (MonoidWithZero.toMulZeroOneClass.{u2} πβ (Semiring.toMonoidWithZero.{u2} πβ (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)))) (MulActionWithZero.toSMulWithZero.{u2, u4} πβ F (Semiring.toMonoidWithZero.{u2} πβ (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)))) (Module.toMulActionWithZero.{u2, u4} πβ F (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5) _inst_6))))) ΞΉ' (Seminorm.semilatticeSup.{u2, u4} πβ F (SeminormedCommRing.toSemiNormedRing.{u2} πβ (NormedCommRing.toSeminormedCommRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4))) (AddCommGroup.toAddGroup.{u4} F _inst_5) (SMulZeroClass.toHasSmul.{u2, u4} πβ F (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)))) (SMulWithZero.toSmulZeroClass.{u2, u4} πβ F (MulZeroClass.toHasZero.{u2} πβ (MulZeroOneClass.toMulZeroClass.{u2} πβ (MonoidWithZero.toMulZeroOneClass.{u2} πβ (Semiring.toMonoidWithZero.{u2} πβ (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)))) (MulActionWithZero.toSMulWithZero.{u2, u4} πβ F (Semiring.toMonoidWithZero.{u2} πβ (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)))) (Module.toMulActionWithZero.{u2, u4} πβ F (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5) _inst_6))))) (Seminorm.orderBot.{u2, u4} πβ F (SeminormedCommRing.toSemiNormedRing.{u2} πβ (NormedCommRing.toSeminormedCommRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4))) _inst_5 _inst_6) s' q) f) (SMul.smul.{0, u3} NNReal (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) (Seminorm.hasSmul.{0, u1, u3} NNReal π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3)))) (MulAction.toHasSmul.{0, 0} NNReal Real (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal NNReal.semiring)) (NNReal.mulAction.{0} Real (Monoid.toMulAction.{0} Real Real.monoid))) (Mul.toSMul.{0} NNReal (MulOneClass.toHasMul.{0} NNReal (Monoid.toMulOneClass.{0} NNReal (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal NNReal.semiring))))) (IsScalarTower.left.{0, 0} NNReal Real (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal NNReal.semiring)) (NNReal.mulAction.{0} Real (Monoid.toMulAction.{0} Real Real.monoid)))) C (Finset.sup.{u3, u5} (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) ΞΉ (Seminorm.semilatticeSup.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) (Seminorm.orderBot.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) _inst_2 _inst_3) s p)))))
-but is expected to have type
- forall {π : Type.{u6}} {πβ : Type.{u4}} {E : Type.{u5}} {F : Type.{u3}} {ΞΉ : Type.{u2}} {ΞΉ' : Type.{u1}} [_inst_1 : NormedField.{u6} π] [_inst_2 : AddCommGroup.{u5} E] [_inst_3 : Module.{u6, u5} π E (DivisionSemiring.toSemiring.{u6} π (Semifield.toDivisionSemiring.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u5} E _inst_2)] [_inst_4 : NormedField.{u4} πβ] [_inst_5 : AddCommGroup.{u3} F] [_inst_6 : Module.{u4, u3} πβ F (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F _inst_5)] {Οββ : RingHom.{u6, u4} π πβ (Semiring.toNonAssocSemiring.{u6} π (DivisionSemiring.toSemiring.{u6} π (Semifield.toDivisionSemiring.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1))))) (Semiring.toNonAssocSemiring.{u4} πβ (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4)))))} [_inst_7 : RingHomIsometric.{u6, u4} π πβ (DivisionSemiring.toSemiring.{u6} π (Semifield.toDivisionSemiring.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1)))) (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4)))) (NormedField.toNorm.{u6} π _inst_1) (NormedField.toNorm.{u4} πβ _inst_4) Οββ] {p : ΞΉ -> (Seminorm.{u6, u5} π E (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1))) (AddCommGroup.toAddGroup.{u5} E _inst_2) (SMulZeroClass.toSMul.{u6, u5} π E (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u6, u5} π E (CommMonoidWithZero.toZero.{u6} π (CommGroupWithZero.toCommMonoidWithZero.{u6} π (Semifield.toCommGroupWithZero.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u6, u5} π E (Semiring.toMonoidWithZero.{u6} π (DivisionSemiring.toSemiring.{u6} π (Semifield.toDivisionSemiring.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (Module.toMulActionWithZero.{u6, u5} π E (DivisionSemiring.toSemiring.{u6} π (Semifield.toDivisionSemiring.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u5} E _inst_2) _inst_3)))))} {q : ΞΉ' -> (Seminorm.{u4, u3} πβ F (SeminormedCommRing.toSeminormedRing.{u4} πβ (NormedCommRing.toSeminormedCommRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ _inst_4))) (AddCommGroup.toAddGroup.{u3} F _inst_5) (SMulZeroClass.toSMul.{u4, u3} πβ F (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_5))))) (SMulWithZero.toSMulZeroClass.{u4, u3} πβ F (CommMonoidWithZero.toZero.{u4} πβ (CommGroupWithZero.toCommMonoidWithZero.{u4} πβ (Semifield.toCommGroupWithZero.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4))))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_5))))) (MulActionWithZero.toSMulWithZero.{u4, u3} πβ F (Semiring.toMonoidWithZero.{u4} πβ (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4))))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_5))))) (Module.toMulActionWithZero.{u4, u3} πβ F (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F _inst_5) _inst_6)))))} {f : LinearMap.{u6, u4, u5, u3} π πβ (DivisionSemiring.toSemiring.{u6} π (Semifield.toDivisionSemiring.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1)))) (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u5} E _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_5) _inst_3 _inst_6}, (Seminorm.IsBounded.{u6, u4, u5, u3, u2, u1} π πβ E F ΞΉ ΞΉ' _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 Οββ _inst_7 p q f) -> (forall (s' : Finset.{u1} ΞΉ'), Exists.{1} NNReal (fun (C : NNReal) => Exists.{succ u2} (Finset.{u2} ΞΉ) (fun (s : Finset.{u2} ΞΉ) => LE.le.{u5} (Seminorm.{u6, u5} π E (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1))) (AddCommGroup.toAddGroup.{u5} E _inst_2) (SMulZeroClass.toSMul.{u6, u5} π E (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u6, u5} π E (MonoidWithZero.toZero.{u6} π (Semiring.toMonoidWithZero.{u6} π (Ring.toSemiring.{u6} π (SeminormedRing.toRing.{u6} π (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1))))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u6, u5} π E (Semiring.toMonoidWithZero.{u6} π (Ring.toSemiring.{u6} π (SeminormedRing.toRing.{u6} π (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1)))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (Module.toMulActionWithZero.{u6, u5} π E (Ring.toSemiring.{u6} π (SeminormedRing.toRing.{u6} π (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u5} E _inst_2) _inst_3))))) (Preorder.toLE.{u5} (Seminorm.{u6, u5} π E (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1))) (AddCommGroup.toAddGroup.{u5} E _inst_2) (SMulZeroClass.toSMul.{u6, u5} π E (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u6, u5} π E (MonoidWithZero.toZero.{u6} π (Semiring.toMonoidWithZero.{u6} π (Ring.toSemiring.{u6} π (SeminormedRing.toRing.{u6} π (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1))))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u6, u5} π E (Semiring.toMonoidWithZero.{u6} π (Ring.toSemiring.{u6} π (SeminormedRing.toRing.{u6} π (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1)))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (Module.toMulActionWithZero.{u6, u5} π E (Ring.toSemiring.{u6} π (SeminormedRing.toRing.{u6} π (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u5} E _inst_2) _inst_3))))) (PartialOrder.toPreorder.{u5} (Seminorm.{u6, u5} π E (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1))) (AddCommGroup.toAddGroup.{u5} E _inst_2) (SMulZeroClass.toSMul.{u6, u5} π E (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u6, u5} π E (MonoidWithZero.toZero.{u6} π (Semiring.toMonoidWithZero.{u6} π (Ring.toSemiring.{u6} π (SeminormedRing.toRing.{u6} π (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1))))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u6, u5} π E (Semiring.toMonoidWithZero.{u6} π (Ring.toSemiring.{u6} π (SeminormedRing.toRing.{u6} π (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1)))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (Module.toMulActionWithZero.{u6, u5} π E (Ring.toSemiring.{u6} π (SeminormedRing.toRing.{u6} π (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u5} E _inst_2) _inst_3))))) (Seminorm.instPartialOrder.{u6, u5} π E (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1))) (AddCommGroup.toAddGroup.{u5} E _inst_2) (SMulZeroClass.toSMul.{u6, u5} π E (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u6, u5} π E (MonoidWithZero.toZero.{u6} π (Semiring.toMonoidWithZero.{u6} π (Ring.toSemiring.{u6} π (SeminormedRing.toRing.{u6} π (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1))))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u6, u5} π E (Semiring.toMonoidWithZero.{u6} π (Ring.toSemiring.{u6} π (SeminormedRing.toRing.{u6} π (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1)))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (Module.toMulActionWithZero.{u6, u5} π E (Ring.toSemiring.{u6} π (SeminormedRing.toRing.{u6} π (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u5} E _inst_2) _inst_3))))))) (Seminorm.comp.{u6, u4, u5, u3} π πβ E F (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1))) (SeminormedCommRing.toSeminormedRing.{u4} πβ (NormedCommRing.toSeminormedCommRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ _inst_4))) Οββ _inst_7 _inst_2 _inst_5 _inst_3 _inst_6 (Finset.sup.{u3, u1} (Seminorm.{u4, u3} πβ F (SeminormedCommRing.toSeminormedRing.{u4} πβ (NormedCommRing.toSeminormedCommRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ _inst_4))) (AddCommGroup.toAddGroup.{u3} F _inst_5) (SMulZeroClass.toSMul.{u4, u3} πβ F (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_5))))) (SMulWithZero.toSMulZeroClass.{u4, u3} πβ F (CommMonoidWithZero.toZero.{u4} πβ (CommGroupWithZero.toCommMonoidWithZero.{u4} πβ (Semifield.toCommGroupWithZero.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4))))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_5))))) (MulActionWithZero.toSMulWithZero.{u4, u3} πβ F (Semiring.toMonoidWithZero.{u4} πβ (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4))))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_5))))) (Module.toMulActionWithZero.{u4, u3} πβ F (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F _inst_5) _inst_6))))) ΞΉ' (Seminorm.instSemilatticeSup.{u4, u3} πβ F (SeminormedCommRing.toSeminormedRing.{u4} πβ (NormedCommRing.toSeminormedCommRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ _inst_4))) (AddCommGroup.toAddGroup.{u3} F _inst_5) (SMulZeroClass.toSMul.{u4, u3} πβ F (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_5))))) (SMulWithZero.toSMulZeroClass.{u4, u3} πβ F (CommMonoidWithZero.toZero.{u4} πβ (CommGroupWithZero.toCommMonoidWithZero.{u4} πβ (Semifield.toCommGroupWithZero.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4))))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_5))))) (MulActionWithZero.toSMulWithZero.{u4, u3} πβ F (Semiring.toMonoidWithZero.{u4} πβ (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4))))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_5))))) (Module.toMulActionWithZero.{u4, u3} πβ F (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F _inst_5) _inst_6))))) (Seminorm.instOrderBot.{u4, u3} πβ F (SeminormedCommRing.toSeminormedRing.{u4} πβ (NormedCommRing.toSeminormedCommRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ _inst_4))) _inst_5 _inst_6) s' q) f) (HSMul.hSMul.{0, u5, u5} NNReal (Seminorm.{u6, u5} π E (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1))) (AddCommGroup.toAddGroup.{u5} E _inst_2) (SMulZeroClass.toSMul.{u6, u5} π E (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u6, u5} π E (CommMonoidWithZero.toZero.{u6} π (CommGroupWithZero.toCommMonoidWithZero.{u6} π (Semifield.toCommGroupWithZero.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u6, u5} π E (Semiring.toMonoidWithZero.{u6} π (DivisionSemiring.toSemiring.{u6} π (Semifield.toDivisionSemiring.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (Module.toMulActionWithZero.{u6, u5} π E (DivisionSemiring.toSemiring.{u6} π (Semifield.toDivisionSemiring.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u5} E _inst_2) _inst_3))))) (Seminorm.{u6, u5} π E (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1))) (AddCommGroup.toAddGroup.{u5} E _inst_2) (SMulZeroClass.toSMul.{u6, u5} π E (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u6, u5} π E (CommMonoidWithZero.toZero.{u6} π (CommGroupWithZero.toCommMonoidWithZero.{u6} π (Semifield.toCommGroupWithZero.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u6, u5} π E (Semiring.toMonoidWithZero.{u6} π (DivisionSemiring.toSemiring.{u6} π (Semifield.toDivisionSemiring.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (Module.toMulActionWithZero.{u6, u5} π E (DivisionSemiring.toSemiring.{u6} π (Semifield.toDivisionSemiring.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u5} E _inst_2) _inst_3))))) (instHSMul.{0, u5} NNReal (Seminorm.{u6, u5} π E (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1))) (AddCommGroup.toAddGroup.{u5} E _inst_2) (SMulZeroClass.toSMul.{u6, u5} π E (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u6, u5} π E (CommMonoidWithZero.toZero.{u6} π (CommGroupWithZero.toCommMonoidWithZero.{u6} π (Semifield.toCommGroupWithZero.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u6, u5} π E (Semiring.toMonoidWithZero.{u6} π (DivisionSemiring.toSemiring.{u6} π (Semifield.toDivisionSemiring.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (Module.toMulActionWithZero.{u6, u5} π E (DivisionSemiring.toSemiring.{u6} π (Semifield.toDivisionSemiring.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u5} E _inst_2) _inst_3))))) (Seminorm.instSMul.{0, u6, u5} NNReal π E (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1))) (AddCommGroup.toAddGroup.{u5} E _inst_2) (SMulZeroClass.toSMul.{u6, u5} π E (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u6, u5} π E (CommMonoidWithZero.toZero.{u6} π (CommGroupWithZero.toCommMonoidWithZero.{u6} π (Semifield.toCommGroupWithZero.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u6, u5} π E (Semiring.toMonoidWithZero.{u6} π (DivisionSemiring.toSemiring.{u6} π (Semifield.toDivisionSemiring.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (Module.toMulActionWithZero.{u6, u5} π E (DivisionSemiring.toSemiring.{u6} π (Semifield.toDivisionSemiring.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u5} E _inst_2) _inst_3)))) Seminorm.smul_nnreal_real (Algebra.toSMul.{0, 0} NNReal NNReal instNNRealCommSemiring instNNRealSemiring (Algebra.id.{0} NNReal instNNRealCommSemiring)) (IsScalarTower.left.{0, 0} NNReal Real (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal instNNRealSemiring)) (NNReal.instMulActionNNRealToMonoidToMonoidWithZeroInstNNRealSemiring.{0} Real (MulActionWithZero.toMulAction.{0, 0} Real Real Real.instMonoidWithZeroReal Real.instZeroReal (MonoidWithZero.toMulActionWithZero.{0} Real Real.instMonoidWithZeroReal)))))) C (Finset.sup.{u5, u2} (Seminorm.{u6, u5} π E (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1))) (AddCommGroup.toAddGroup.{u5} E _inst_2) (SMulZeroClass.toSMul.{u6, u5} π E (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u6, u5} π E (CommMonoidWithZero.toZero.{u6} π (CommGroupWithZero.toCommMonoidWithZero.{u6} π (Semifield.toCommGroupWithZero.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u6, u5} π E (Semiring.toMonoidWithZero.{u6} π (DivisionSemiring.toSemiring.{u6} π (Semifield.toDivisionSemiring.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (Module.toMulActionWithZero.{u6, u5} π E (DivisionSemiring.toSemiring.{u6} π (Semifield.toDivisionSemiring.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u5} E _inst_2) _inst_3))))) ΞΉ (Seminorm.instSemilatticeSup.{u6, u5} π E (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1))) (AddCommGroup.toAddGroup.{u5} E _inst_2) (SMulZeroClass.toSMul.{u6, u5} π E (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u6, u5} π E (CommMonoidWithZero.toZero.{u6} π (CommGroupWithZero.toCommMonoidWithZero.{u6} π (Semifield.toCommGroupWithZero.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u6, u5} π E (Semiring.toMonoidWithZero.{u6} π (DivisionSemiring.toSemiring.{u6} π (Semifield.toDivisionSemiring.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (Module.toMulActionWithZero.{u6, u5} π E (DivisionSemiring.toSemiring.{u6} π (Semifield.toDivisionSemiring.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u5} E _inst_2) _inst_3))))) (Seminorm.instOrderBot.{u6, u5} π E (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1))) _inst_2 _inst_3) s p)))))
+<too large>
Case conversion may be inaccurate. Consider using '#align seminorm.is_bounded_sup Seminorm.isBounded_supβ'. -/
theorem isBounded_sup {p : ΞΉ β Seminorm π E} {q : ΞΉ' β Seminorm πβ F} {f : E βββ[Οββ] F}
(hf : IsBounded p q f) (s' : Finset ΞΉ') :
@@ -428,10 +401,7 @@ theorem WithSeminorms.hasBasis (hp : WithSeminorms p) :
#align with_seminorms.has_basis WithSeminorms.hasBasis
/- warning: with_seminorms.has_basis_zero_ball -> WithSeminorms.hasBasis_zero_ball is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u3} ΞΉ] [_inst_5 : TopologicalSpace.{u2} E] {p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3}, (WithSeminorms.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p _inst_5) -> (Filter.HasBasis.{u2, succ u3} E (Prod.{u3, 0} (Finset.{u3} ΞΉ) Real) (nhds.{u2} E _inst_5 (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))))))) (fun (sr : Prod.{u3, 0} (Finset.{u3} ΞΉ) Real) => LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) (Prod.snd.{u3, 0} (Finset.{u3} ΞΉ) Real sr)) (fun (sr : Prod.{u3, 0} (Finset.{u3} ΞΉ) Real) => Seminorm.ball.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) _inst_2 (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (Finset.sup.{u2, u3} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) ΞΉ (Seminorm.semilatticeSup.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (Seminorm.orderBot.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) _inst_2 _inst_3) (Prod.fst.{u3, 0} (Finset.{u3} ΞΉ) Real sr) p) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2)))))))) (Prod.snd.{u3, 0} (Finset.{u3} ΞΉ) Real sr)))
-but is expected to have type
- forall {π : Type.{u3}} {E : Type.{u2}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u3} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u1} ΞΉ] [_inst_5 : TopologicalSpace.{u2} E] {p : SeminormFamily.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3}, (WithSeminorms.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p _inst_5) -> (Filter.HasBasis.{u2, succ u1} E (Prod.{u1, 0} (Finset.{u1} ΞΉ) Real) (nhds.{u2} E _inst_5 (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2)))))))) (fun (sr : Prod.{u1, 0} (Finset.{u1} ΞΉ) Real) => LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) (Prod.snd.{u1, 0} (Finset.{u1} ΞΉ) Real sr)) (fun (sr : Prod.{u1, 0} (Finset.{u1} ΞΉ) Real) => Seminorm.ball.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) _inst_2 (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (Finset.sup.{u2, u1} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) ΞΉ (Seminorm.instSemilatticeSup.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (Seminorm.instOrderBot.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) _inst_2 _inst_3) (Prod.fst.{u1, 0} (Finset.{u1} ΞΉ) Real sr) p) (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))))) (Prod.snd.{u1, 0} (Finset.{u1} ΞΉ) Real sr)))
+<too large>
Case conversion may be inaccurate. Consider using '#align with_seminorms.has_basis_zero_ball WithSeminorms.hasBasis_zero_ballβ'. -/
theorem WithSeminorms.hasBasis_zero_ball (hp : WithSeminorms p) :
(π (0 : E)).HasBasis (fun sr : Finset ΞΉ Γ β => 0 < sr.2) fun sr => (sr.1.sup p).ball 0 sr.2 :=
@@ -446,10 +416,7 @@ theorem WithSeminorms.hasBasis_zero_ball (hp : WithSeminorms p) :
#align with_seminorms.has_basis_zero_ball WithSeminorms.hasBasis_zero_ball
/- warning: with_seminorms.has_basis_ball -> WithSeminorms.hasBasis_ball is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u3} ΞΉ] [_inst_5 : TopologicalSpace.{u2} E] {p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3}, (WithSeminorms.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p _inst_5) -> (forall {x : E}, Filter.HasBasis.{u2, succ u3} E (Prod.{u3, 0} (Finset.{u3} ΞΉ) Real) (nhds.{u2} E _inst_5 x) (fun (sr : Prod.{u3, 0} (Finset.{u3} ΞΉ) Real) => LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) (Prod.snd.{u3, 0} (Finset.{u3} ΞΉ) Real sr)) (fun (sr : Prod.{u3, 0} (Finset.{u3} ΞΉ) Real) => Seminorm.ball.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) _inst_2 (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (Finset.sup.{u2, u3} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) ΞΉ (Seminorm.semilatticeSup.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (Seminorm.orderBot.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) _inst_2 _inst_3) (Prod.fst.{u3, 0} (Finset.{u3} ΞΉ) Real sr) p) x (Prod.snd.{u3, 0} (Finset.{u3} ΞΉ) Real sr)))
-but is expected to have type
- forall {π : Type.{u3}} {E : Type.{u2}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u3} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u1} ΞΉ] [_inst_5 : TopologicalSpace.{u2} E] {p : SeminormFamily.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3}, (WithSeminorms.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p _inst_5) -> (forall {x : E}, Filter.HasBasis.{u2, succ u1} E (Prod.{u1, 0} (Finset.{u1} ΞΉ) Real) (nhds.{u2} E _inst_5 x) (fun (sr : Prod.{u1, 0} (Finset.{u1} ΞΉ) Real) => LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) (Prod.snd.{u1, 0} (Finset.{u1} ΞΉ) Real sr)) (fun (sr : Prod.{u1, 0} (Finset.{u1} ΞΉ) Real) => Seminorm.ball.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) _inst_2 (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (Finset.sup.{u2, u1} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) ΞΉ (Seminorm.instSemilatticeSup.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (Seminorm.instOrderBot.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) _inst_2 _inst_3) (Prod.fst.{u1, 0} (Finset.{u1} ΞΉ) Real sr) p) x (Prod.snd.{u1, 0} (Finset.{u1} ΞΉ) Real sr)))
+<too large>
Case conversion may be inaccurate. Consider using '#align with_seminorms.has_basis_ball WithSeminorms.hasBasis_ballβ'. -/
theorem WithSeminorms.hasBasis_ball (hp : WithSeminorms p) {x : E} :
(π (x : E)).HasBasis (fun sr : Finset ΞΉ Γ β => 0 < sr.2) fun sr => (sr.1.sup p).ball x sr.2 :=
@@ -464,10 +431,7 @@ theorem WithSeminorms.hasBasis_ball (hp : WithSeminorms p) {x : E} :
#align with_seminorms.has_basis_ball WithSeminorms.hasBasis_ball
/- warning: with_seminorms.mem_nhds_iff -> WithSeminorms.mem_nhds_iff is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u3} ΞΉ] [_inst_5 : TopologicalSpace.{u2} E] {p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3}, (WithSeminorms.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p _inst_5) -> (forall (x : E) (U : Set.{u2} E), Iff (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) U (nhds.{u2} E _inst_5 x)) (Exists.{succ u3} (Finset.{u3} ΞΉ) (fun (s : Finset.{u3} ΞΉ) => Exists.{1} Real (fun (r : Real) => Exists.{0} (GT.gt.{0} Real Real.hasLt r (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))) (fun (H : GT.gt.{0} Real Real.hasLt r (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))) => HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) (Seminorm.ball.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) _inst_2 (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (Finset.sup.{u2, u3} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) ΞΉ (Seminorm.semilatticeSup.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (Seminorm.orderBot.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) _inst_2 _inst_3) s p) x r) U)))))
-but is expected to have type
- forall {π : Type.{u3}} {E : Type.{u2}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u3} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u1} ΞΉ] [_inst_5 : TopologicalSpace.{u2} E] {p : SeminormFamily.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3}, (WithSeminorms.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p _inst_5) -> (forall (x : E) (U : Set.{u2} E), Iff (Membership.mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (instMembershipSetFilter.{u2} E) U (nhds.{u2} E _inst_5 x)) (Exists.{succ u1} (Finset.{u1} ΞΉ) (fun (s : Finset.{u1} ΞΉ) => Exists.{1} Real (fun (r : Real) => And (GT.gt.{0} Real Real.instLTReal r (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))) (HasSubset.Subset.{u2} (Set.{u2} E) (Set.instHasSubsetSet.{u2} E) (Seminorm.ball.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) _inst_2 (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (Finset.sup.{u2, u1} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) ΞΉ (Seminorm.instSemilatticeSup.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (Seminorm.instOrderBot.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) _inst_2 _inst_3) s p) x r) U)))))
+<too large>
Case conversion may be inaccurate. Consider using '#align with_seminorms.mem_nhds_iff WithSeminorms.mem_nhds_iffβ'. -/
/-- The `x`-neighbourhoods of a space whose topology is induced by a family of seminorms
are exactly the sets which contain seminorm balls around `x`.-/
@@ -477,10 +441,7 @@ theorem WithSeminorms.mem_nhds_iff (hp : WithSeminorms p) (x : E) (U : Set E) :
#align with_seminorms.mem_nhds_iff WithSeminorms.mem_nhds_iff
/- warning: with_seminorms.is_open_iff_mem_balls -> WithSeminorms.isOpen_iff_mem_balls is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u3} ΞΉ] [_inst_5 : TopologicalSpace.{u2} E] {p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3}, (WithSeminorms.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p _inst_5) -> (forall (U : Set.{u2} E), Iff (IsOpen.{u2} E _inst_5 U) (forall (x : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x U) -> (Exists.{succ u3} (Finset.{u3} ΞΉ) (fun (s : Finset.{u3} ΞΉ) => Exists.{1} Real (fun (r : Real) => Exists.{0} (GT.gt.{0} Real Real.hasLt r (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))) (fun (H : GT.gt.{0} Real Real.hasLt r (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))) => HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) (Seminorm.ball.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) _inst_2 (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (Finset.sup.{u2, u3} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) ΞΉ (Seminorm.semilatticeSup.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (Seminorm.orderBot.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) _inst_2 _inst_3) s p) x r) U))))))
-but is expected to have type
- forall {π : Type.{u3}} {E : Type.{u2}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u3} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u1} ΞΉ] [_inst_5 : TopologicalSpace.{u2} E] {p : SeminormFamily.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3}, (WithSeminorms.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p _inst_5) -> (forall (U : Set.{u2} E), Iff (IsOpen.{u2} E _inst_5 U) (forall (x : E), (Membership.mem.{u2, u2} E (Set.{u2} E) (Set.instMembershipSet.{u2} E) x U) -> (Exists.{succ u1} (Finset.{u1} ΞΉ) (fun (s : Finset.{u1} ΞΉ) => Exists.{1} Real (fun (r : Real) => And (GT.gt.{0} Real Real.instLTReal r (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))) (HasSubset.Subset.{u2} (Set.{u2} E) (Set.instHasSubsetSet.{u2} E) (Seminorm.ball.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) _inst_2 (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (Finset.sup.{u2, u1} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) ΞΉ (Seminorm.instSemilatticeSup.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (Seminorm.instOrderBot.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) _inst_2 _inst_3) s p) x r) U))))))
+<too large>
Case conversion may be inaccurate. Consider using '#align with_seminorms.is_open_iff_mem_balls WithSeminorms.isOpen_iff_mem_ballsβ'. -/
/-- The open sets of a space whose topology is induced by a family of seminorms
are exactly the sets which contain seminorm balls around all of their points.-/
@@ -490,10 +451,7 @@ theorem WithSeminorms.isOpen_iff_mem_balls (hp : WithSeminorms p) (U : Set E) :
#align with_seminorms.is_open_iff_mem_balls WithSeminorms.isOpen_iff_mem_balls
/- warning: with_seminorms.t1_of_separating -> WithSeminorms.T1_of_separating is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u3} ΞΉ] [_inst_5 : TopologicalSpace.{u2} E] {p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3}, (WithSeminorms.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p _inst_5) -> (forall (x : E), (Ne.{succ u2} E x (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))))))) -> (Exists.{succ u3} ΞΉ (fun (i : ΞΉ) => Ne.{1} Real (coeFn.{succ u2, succ u2} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (fun (_x : Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) => E -> Real) (Seminorm.hasCoeToFun.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (p i) x) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))))) -> (T1Space.{u2} E _inst_5)
-but is expected to have type
- forall {π : Type.{u3}} {E : Type.{u2}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u3} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u1} ΞΉ] [_inst_5 : TopologicalSpace.{u2} E] {p : SeminormFamily.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3}, (WithSeminorms.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p _inst_5) -> (forall (x : E), (Ne.{succ u2} E x (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2)))))))) -> (Exists.{succ u1} ΞΉ (fun (i : ΞΉ) => Ne.{1} ((fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) x) (FunLike.coe.{succ u2, succ u2, 1} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) E (fun (_x : E) => (fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) _x) (SubadditiveHomClass.toFunLike.{u2, u2, 0} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) E Real (AddZeroClass.toAdd.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real (AddCommMonoid.toAddMonoid.{0} Real (OrderedAddCommMonoid.toAddCommMonoid.{0} Real Real.orderedAddCommMonoid)))) (Preorder.toLE.{0} Real (PartialOrder.toPreorder.{0} Real (OrderedAddCommMonoid.toPartialOrder.{0} Real Real.orderedAddCommMonoid))) (AddGroupSeminormClass.toAddLEAddHomClass.{u2, u2, 0} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) E Real (AddCommGroup.toAddGroup.{u2} E _inst_2) Real.orderedAddCommMonoid (SeminormClass.toAddGroupSeminormClass.{u2, u3, u2} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (Seminorm.instSeminormClass.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))))))) (p i) x) (OfNat.ofNat.{0} ((fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) x) 0 (Zero.toOfNat0.{0} ((fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) x) Real.instZeroReal))))) -> (T1Space.{u2} E _inst_5)
+<too large>
Case conversion may be inaccurate. Consider using '#align with_seminorms.t1_of_separating WithSeminorms.T1_of_separatingβ'. -/
/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (x Β«expr β Β» 0) -/
/- Note that through the following lemmas, one also immediately has that separating families
@@ -513,10 +471,7 @@ theorem WithSeminorms.T1_of_separating (hp : WithSeminorms p)
#align with_seminorms.t1_of_separating WithSeminorms.T1_of_separating
/- warning: with_seminorms.separating_of_t1 -> WithSeminorms.separating_of_T1 is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u3} ΞΉ] [_inst_5 : TopologicalSpace.{u2} E] {p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3} [_inst_6 : T1Space.{u2} E _inst_5], (WithSeminorms.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p _inst_5) -> (forall (x : E), (Ne.{succ u2} E x (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))))))) -> (Exists.{succ u3} ΞΉ (fun (i : ΞΉ) => Ne.{1} Real (coeFn.{succ u2, succ u2} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (fun (_x : Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) => E -> Real) (Seminorm.hasCoeToFun.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (p i) x) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))))))
-but is expected to have type
- forall {π : Type.{u2}} {E : Type.{u3}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u2} π] [_inst_2 : AddCommGroup.{u3} E] [_inst_3 : Module.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] [_inst_4 : Nonempty.{succ u1} ΞΉ] [_inst_5 : TopologicalSpace.{u3} E] {p : SeminormFamily.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3} [_inst_6 : T1Space.{u3} E _inst_5], (WithSeminorms.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p _inst_5) -> (forall (x : E), (Ne.{succ u3} E x (OfNat.ofNat.{u3} E 0 (Zero.toOfNat0.{u3} E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2)))))))) -> (Exists.{succ u1} ΞΉ (fun (i : ΞΉ) => Ne.{1} ((fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) x) (FunLike.coe.{succ u3, succ u3, 1} (Seminorm.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) E (fun (_x : E) => (fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) _x) (SubadditiveHomClass.toFunLike.{u3, u3, 0} (Seminorm.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) E Real (AddZeroClass.toAdd.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_2))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real (AddCommMonoid.toAddMonoid.{0} Real (OrderedAddCommMonoid.toAddCommMonoid.{0} Real Real.orderedAddCommMonoid)))) (Preorder.toLE.{0} Real (PartialOrder.toPreorder.{0} Real (OrderedAddCommMonoid.toPartialOrder.{0} Real Real.orderedAddCommMonoid))) (AddGroupSeminormClass.toAddLEAddHomClass.{u3, u3, 0} (Seminorm.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) E Real (AddCommGroup.toAddGroup.{u3} E _inst_2) Real.orderedAddCommMonoid (SeminormClass.toAddGroupSeminormClass.{u3, u2, u3} (Seminorm.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3)))) (Seminorm.instSeminormClass.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3)))))))) (p i) x) (OfNat.ofNat.{0} ((fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) x) 0 (Zero.toOfNat0.{0} ((fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) x) Real.instZeroReal)))))
+<too large>
Case conversion may be inaccurate. Consider using '#align with_seminorms.separating_of_t1 WithSeminorms.separating_of_T1β'. -/
/-- A family of seminorms inducing a Tβ topology is separating. -/
theorem WithSeminorms.separating_of_T1 [T1Space E] (hp : WithSeminorms p) (x : E) (hx : x β 0) :
@@ -530,10 +485,7 @@ theorem WithSeminorms.separating_of_T1 [T1Space E] (hp : WithSeminorms p) (x : E
#align with_seminorms.separating_of_t1 WithSeminorms.separating_of_T1
/- warning: with_seminorms.separating_iff_t1 -> WithSeminorms.separating_iff_T1 is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u3} ΞΉ] [_inst_5 : TopologicalSpace.{u2} E] {p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3}, (WithSeminorms.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p _inst_5) -> (Iff (forall (x : E), (Ne.{succ u2} E x (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))))))) -> (Exists.{succ u3} ΞΉ (fun (i : ΞΉ) => Ne.{1} Real (coeFn.{succ u2, succ u2} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (fun (_x : Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) => E -> Real) (Seminorm.hasCoeToFun.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (p i) x) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))))) (T1Space.{u2} E _inst_5))
-but is expected to have type
- forall {π : Type.{u3}} {E : Type.{u2}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u3} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u1} ΞΉ] [_inst_5 : TopologicalSpace.{u2} E] {p : SeminormFamily.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3}, (WithSeminorms.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p _inst_5) -> (Iff (forall (x : E), (Ne.{succ u2} E x (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2)))))))) -> (Exists.{succ u1} ΞΉ (fun (i : ΞΉ) => Ne.{1} ((fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) x) (FunLike.coe.{succ u2, succ u2, 1} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) E (fun (_x : E) => (fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) _x) (SubadditiveHomClass.toFunLike.{u2, u2, 0} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) E Real (AddZeroClass.toAdd.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real (AddCommMonoid.toAddMonoid.{0} Real (OrderedAddCommMonoid.toAddCommMonoid.{0} Real Real.orderedAddCommMonoid)))) (Preorder.toLE.{0} Real (PartialOrder.toPreorder.{0} Real (OrderedAddCommMonoid.toPartialOrder.{0} Real Real.orderedAddCommMonoid))) (AddGroupSeminormClass.toAddLEAddHomClass.{u2, u2, 0} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) E Real (AddCommGroup.toAddGroup.{u2} E _inst_2) Real.orderedAddCommMonoid (SeminormClass.toAddGroupSeminormClass.{u2, u3, u2} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (Seminorm.instSeminormClass.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))))))) (p i) x) (OfNat.ofNat.{0} ((fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) x) 0 (Zero.toOfNat0.{0} ((fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) x) Real.instZeroReal))))) (T1Space.{u2} E _inst_5))
+<too large>
Case conversion may be inaccurate. Consider using '#align with_seminorms.separating_iff_t1 WithSeminorms.separating_iff_T1β'. -/
/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (x Β«expr β Β» 0) -/
/-- A family of seminorms is separating iff it induces a Tβ topology. -/
@@ -554,10 +506,7 @@ variable [NormedField π] [AddCommGroup E] [Module π E] [Nonempty ΞΉ] [Topo
variable {p : SeminormFamily π E ΞΉ}
/- warning: with_seminorms.tendsto_nhds' -> WithSeminorms.tendsto_nhds' is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} {ΞΉ : Type.{u4}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u4} ΞΉ] [_inst_5 : TopologicalSpace.{u2} E] {p : SeminormFamily.{u1, u2, u4} π E ΞΉ _inst_1 _inst_2 _inst_3}, (WithSeminorms.{u1, u2, u4} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p _inst_5) -> (forall (u : F -> E) {f : Filter.{u3} F} (yβ : E), Iff (Filter.Tendsto.{u3, u2} F E u f (nhds.{u2} E _inst_5 yβ)) (forall (s : Finset.{u4} ΞΉ) (Ξ΅ : Real), (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) Ξ΅) -> (Filter.Eventually.{u3} F (fun (x : F) => LT.lt.{0} Real Real.hasLt (coeFn.{succ u2, succ u2} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (fun (_x : Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) => E -> Real) (Seminorm.hasCoeToFun.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (Finset.sup.{u2, u4} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) ΞΉ (Seminorm.semilatticeSup.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (Seminorm.orderBot.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) _inst_2 _inst_3) s p) (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2)))) (u x) yβ)) Ξ΅) f)))
-but is expected to have type
- forall {π : Type.{u4}} {E : Type.{u3}} {F : Type.{u1}} {ΞΉ : Type.{u2}} [_inst_1 : NormedField.{u4} π] [_inst_2 : AddCommGroup.{u3} E] [_inst_3 : Module.{u4, u3} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] [_inst_4 : Nonempty.{succ u2} ΞΉ] [_inst_5 : TopologicalSpace.{u3} E] {p : SeminormFamily.{u4, u3, u2} π E ΞΉ _inst_1 _inst_2 _inst_3}, (WithSeminorms.{u4, u3, u2} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p _inst_5) -> (forall (u : F -> E) {f : Filter.{u1} F} (yβ : E), Iff (Filter.Tendsto.{u1, u3} F E u f (nhds.{u3} E _inst_5 yβ)) (forall (s : Finset.{u2} ΞΉ) (Ξ΅ : Real), (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) Ξ΅) -> (Filter.Eventually.{u1} F (fun (x : F) => LT.lt.{0} ((fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) (HSub.hSub.{u3, u3, u3} E E E (instHSub.{u3} E (SubNegMonoid.toSub.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_2)))) (u x) yβ)) Real.instLTReal (FunLike.coe.{succ u3, succ u3, 1} (Seminorm.{u4, u3} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u4, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u4, u3} π E (CommMonoidWithZero.toZero.{u4} π (CommGroupWithZero.toCommMonoidWithZero.{u4} π (Semifield.toCommGroupWithZero.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u4, u3} π E (Semiring.toMonoidWithZero.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u4, u3} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) E (fun (_x : E) => (fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) _x) (SubadditiveHomClass.toFunLike.{u3, u3, 0} (Seminorm.{u4, u3} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u4, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u4, u3} π E (CommMonoidWithZero.toZero.{u4} π (CommGroupWithZero.toCommMonoidWithZero.{u4} π (Semifield.toCommGroupWithZero.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u4, u3} π E (Semiring.toMonoidWithZero.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u4, u3} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) E Real (AddZeroClass.toAdd.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_2))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real (AddCommMonoid.toAddMonoid.{0} Real (OrderedAddCommMonoid.toAddCommMonoid.{0} Real Real.orderedAddCommMonoid)))) (Preorder.toLE.{0} Real (PartialOrder.toPreorder.{0} Real (OrderedAddCommMonoid.toPartialOrder.{0} Real Real.orderedAddCommMonoid))) (AddGroupSeminormClass.toAddLEAddHomClass.{u3, u3, 0} (Seminorm.{u4, u3} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u4, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u4, u3} π E (CommMonoidWithZero.toZero.{u4} π (CommGroupWithZero.toCommMonoidWithZero.{u4} π (Semifield.toCommGroupWithZero.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u4, u3} π E (Semiring.toMonoidWithZero.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u4, u3} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) E Real (AddCommGroup.toAddGroup.{u3} E _inst_2) Real.orderedAddCommMonoid (SeminormClass.toAddGroupSeminormClass.{u3, u4, u3} (Seminorm.{u4, u3} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u4, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u4, u3} π E (CommMonoidWithZero.toZero.{u4} π (CommGroupWithZero.toCommMonoidWithZero.{u4} π (Semifield.toCommGroupWithZero.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u4, u3} π E (Semiring.toMonoidWithZero.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u4, u3} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u4, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u4, u3} π E (CommMonoidWithZero.toZero.{u4} π (CommGroupWithZero.toCommMonoidWithZero.{u4} π (Semifield.toCommGroupWithZero.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u4, u3} π E (Semiring.toMonoidWithZero.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u4, u3} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3)))) (Seminorm.instSeminormClass.{u4, u3} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u4, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u4, u3} π E (CommMonoidWithZero.toZero.{u4} π (CommGroupWithZero.toCommMonoidWithZero.{u4} π (Semifield.toCommGroupWithZero.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u4, u3} π E (Semiring.toMonoidWithZero.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u4, u3} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3)))))))) (Finset.sup.{u3, u2} (Seminorm.{u4, u3} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u4, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u4, u3} π E (CommMonoidWithZero.toZero.{u4} π (CommGroupWithZero.toCommMonoidWithZero.{u4} π (Semifield.toCommGroupWithZero.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u4, u3} π E (Semiring.toMonoidWithZero.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u4, u3} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) ΞΉ (Seminorm.instSemilatticeSup.{u4, u3} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u4, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u4, u3} π E (CommMonoidWithZero.toZero.{u4} π (CommGroupWithZero.toCommMonoidWithZero.{u4} π (Semifield.toCommGroupWithZero.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u4, u3} π E (Semiring.toMonoidWithZero.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u4, u3} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) (Seminorm.instOrderBot.{u4, u3} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_1))) _inst_2 _inst_3) s p) (HSub.hSub.{u3, u3, u3} E E E (instHSub.{u3} E (SubNegMonoid.toSub.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_2)))) (u x) yβ)) Ξ΅) f)))
+<too large>
Case conversion may be inaccurate. Consider using '#align with_seminorms.tendsto_nhds' WithSeminorms.tendsto_nhds'β'. -/
/-- Convergence along filters for `with_seminorms`.
@@ -568,10 +517,7 @@ theorem WithSeminorms.tendsto_nhds' (hp : WithSeminorms p) (u : F β E) {f : Fi
#align with_seminorms.tendsto_nhds' WithSeminorms.tendsto_nhds'
/- warning: with_seminorms.tendsto_nhds -> WithSeminorms.tendsto_nhds is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} {ΞΉ : Type.{u4}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u4} ΞΉ] [_inst_5 : TopologicalSpace.{u2} E] {p : SeminormFamily.{u1, u2, u4} π E ΞΉ _inst_1 _inst_2 _inst_3}, (WithSeminorms.{u1, u2, u4} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p _inst_5) -> (forall (u : F -> E) {f : Filter.{u3} F} (yβ : E), Iff (Filter.Tendsto.{u3, u2} F E u f (nhds.{u2} E _inst_5 yβ)) (forall (i : ΞΉ) (Ξ΅ : Real), (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) Ξ΅) -> (Filter.Eventually.{u3} F (fun (x : F) => LT.lt.{0} Real Real.hasLt (coeFn.{succ u2, succ u2} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (fun (_x : Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) => E -> Real) (Seminorm.hasCoeToFun.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (p i) (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2)))) (u x) yβ)) Ξ΅) f)))
-but is expected to have type
- forall {π : Type.{u4}} {E : Type.{u3}} {F : Type.{u1}} {ΞΉ : Type.{u2}} [_inst_1 : NormedField.{u4} π] [_inst_2 : AddCommGroup.{u3} E] [_inst_3 : Module.{u4, u3} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] [_inst_4 : Nonempty.{succ u2} ΞΉ] [_inst_5 : TopologicalSpace.{u3} E] {p : SeminormFamily.{u4, u3, u2} π E ΞΉ _inst_1 _inst_2 _inst_3}, (WithSeminorms.{u4, u3, u2} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p _inst_5) -> (forall (u : F -> E) {f : Filter.{u1} F} (yβ : E), Iff (Filter.Tendsto.{u1, u3} F E u f (nhds.{u3} E _inst_5 yβ)) (forall (i : ΞΉ) (Ξ΅ : Real), (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) Ξ΅) -> (Filter.Eventually.{u1} F (fun (x : F) => LT.lt.{0} ((fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) (HSub.hSub.{u3, u3, u3} E E E (instHSub.{u3} E (SubNegMonoid.toSub.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_2)))) (u x) yβ)) Real.instLTReal (FunLike.coe.{succ u3, succ u3, 1} (Seminorm.{u4, u3} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u4, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u4, u3} π E (CommMonoidWithZero.toZero.{u4} π (CommGroupWithZero.toCommMonoidWithZero.{u4} π (Semifield.toCommGroupWithZero.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u4, u3} π E (Semiring.toMonoidWithZero.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u4, u3} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) E (fun (_x : E) => (fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) _x) (SubadditiveHomClass.toFunLike.{u3, u3, 0} (Seminorm.{u4, u3} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u4, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u4, u3} π E (CommMonoidWithZero.toZero.{u4} π (CommGroupWithZero.toCommMonoidWithZero.{u4} π (Semifield.toCommGroupWithZero.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u4, u3} π E (Semiring.toMonoidWithZero.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u4, u3} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) E Real (AddZeroClass.toAdd.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_2))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real (AddCommMonoid.toAddMonoid.{0} Real (OrderedAddCommMonoid.toAddCommMonoid.{0} Real Real.orderedAddCommMonoid)))) (Preorder.toLE.{0} Real (PartialOrder.toPreorder.{0} Real (OrderedAddCommMonoid.toPartialOrder.{0} Real Real.orderedAddCommMonoid))) (AddGroupSeminormClass.toAddLEAddHomClass.{u3, u3, 0} (Seminorm.{u4, u3} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u4, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u4, u3} π E (CommMonoidWithZero.toZero.{u4} π (CommGroupWithZero.toCommMonoidWithZero.{u4} π (Semifield.toCommGroupWithZero.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u4, u3} π E (Semiring.toMonoidWithZero.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u4, u3} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) E Real (AddCommGroup.toAddGroup.{u3} E _inst_2) Real.orderedAddCommMonoid (SeminormClass.toAddGroupSeminormClass.{u3, u4, u3} (Seminorm.{u4, u3} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u4, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u4, u3} π E (CommMonoidWithZero.toZero.{u4} π (CommGroupWithZero.toCommMonoidWithZero.{u4} π (Semifield.toCommGroupWithZero.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u4, u3} π E (Semiring.toMonoidWithZero.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u4, u3} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u4, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u4, u3} π E (CommMonoidWithZero.toZero.{u4} π (CommGroupWithZero.toCommMonoidWithZero.{u4} π (Semifield.toCommGroupWithZero.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u4, u3} π E (Semiring.toMonoidWithZero.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u4, u3} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3)))) (Seminorm.instSeminormClass.{u4, u3} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u4, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u4, u3} π E (CommMonoidWithZero.toZero.{u4} π (CommGroupWithZero.toCommMonoidWithZero.{u4} π (Semifield.toCommGroupWithZero.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u4, u3} π E (Semiring.toMonoidWithZero.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u4, u3} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3)))))))) (p i) (HSub.hSub.{u3, u3, u3} E E E (instHSub.{u3} E (SubNegMonoid.toSub.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_2)))) (u x) yβ)) Ξ΅) f)))
+<too large>
Case conversion may be inaccurate. Consider using '#align with_seminorms.tendsto_nhds WithSeminorms.tendsto_nhdsβ'. -/
/-- Convergence along filters for `with_seminorms`. -/
theorem WithSeminorms.tendsto_nhds (hp : WithSeminorms p) (u : F β E) {f : Filter F} (yβ : E) :
@@ -586,10 +532,7 @@ theorem WithSeminorms.tendsto_nhds (hp : WithSeminorms p) (u : F β E) {f : Fil
variable [SemilatticeSup F] [Nonempty F]
/- warning: with_seminorms.tendsto_nhds_at_top -> WithSeminorms.tendsto_nhds_atTop is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} {ΞΉ : Type.{u4}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u4} ΞΉ] [_inst_5 : TopologicalSpace.{u2} E] {p : SeminormFamily.{u1, u2, u4} π E ΞΉ _inst_1 _inst_2 _inst_3} [_inst_6 : SemilatticeSup.{u3} F] [_inst_7 : Nonempty.{succ u3} F], (WithSeminorms.{u1, u2, u4} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p _inst_5) -> (forall (u : F -> E) (yβ : E), Iff (Filter.Tendsto.{u3, u2} F E u (Filter.atTop.{u3} F (PartialOrder.toPreorder.{u3} F (SemilatticeSup.toPartialOrder.{u3} F _inst_6))) (nhds.{u2} E _inst_5 yβ)) (forall (i : ΞΉ) (Ξ΅ : Real), (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) Ξ΅) -> (Exists.{succ u3} F (fun (xβ : F) => forall (x : F), (LE.le.{u3} F (Preorder.toHasLe.{u3} F (PartialOrder.toPreorder.{u3} F (SemilatticeSup.toPartialOrder.{u3} F _inst_6))) xβ x) -> (LT.lt.{0} Real Real.hasLt (coeFn.{succ u2, succ u2} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (fun (_x : Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) => E -> Real) (Seminorm.hasCoeToFun.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (p i) (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2)))) (u x) yβ)) Ξ΅)))))
-but is expected to have type
- forall {π : Type.{u4}} {E : Type.{u3}} {F : Type.{u1}} {ΞΉ : Type.{u2}} [_inst_1 : NormedField.{u4} π] [_inst_2 : AddCommGroup.{u3} E] [_inst_3 : Module.{u4, u3} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] [_inst_4 : Nonempty.{succ u2} ΞΉ] [_inst_5 : TopologicalSpace.{u3} E] {p : SeminormFamily.{u4, u3, u2} π E ΞΉ _inst_1 _inst_2 _inst_3} [_inst_6 : SemilatticeSup.{u1} F] [_inst_7 : Nonempty.{succ u1} F], (WithSeminorms.{u4, u3, u2} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p _inst_5) -> (forall (u : F -> E) (yβ : E), Iff (Filter.Tendsto.{u1, u3} F E u (Filter.atTop.{u1} F (PartialOrder.toPreorder.{u1} F (SemilatticeSup.toPartialOrder.{u1} F _inst_6))) (nhds.{u3} E _inst_5 yβ)) (forall (i : ΞΉ) (Ξ΅ : Real), (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) Ξ΅) -> (Exists.{succ u1} F (fun (xβ : F) => forall (x : F), (LE.le.{u1} F (Preorder.toLE.{u1} F (PartialOrder.toPreorder.{u1} F (SemilatticeSup.toPartialOrder.{u1} F _inst_6))) xβ x) -> (LT.lt.{0} ((fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) (HSub.hSub.{u3, u3, u3} E E E (instHSub.{u3} E (SubNegMonoid.toSub.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_2)))) (u x) yβ)) Real.instLTReal (FunLike.coe.{succ u3, succ u3, 1} (Seminorm.{u4, u3} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u4, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u4, u3} π E (CommMonoidWithZero.toZero.{u4} π (CommGroupWithZero.toCommMonoidWithZero.{u4} π (Semifield.toCommGroupWithZero.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u4, u3} π E (Semiring.toMonoidWithZero.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u4, u3} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) E (fun (_x : E) => (fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) _x) (SubadditiveHomClass.toFunLike.{u3, u3, 0} (Seminorm.{u4, u3} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u4, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u4, u3} π E (CommMonoidWithZero.toZero.{u4} π (CommGroupWithZero.toCommMonoidWithZero.{u4} π (Semifield.toCommGroupWithZero.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u4, u3} π E (Semiring.toMonoidWithZero.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u4, u3} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) E Real (AddZeroClass.toAdd.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_2))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real (AddCommMonoid.toAddMonoid.{0} Real (OrderedAddCommMonoid.toAddCommMonoid.{0} Real Real.orderedAddCommMonoid)))) (Preorder.toLE.{0} Real (PartialOrder.toPreorder.{0} Real (OrderedAddCommMonoid.toPartialOrder.{0} Real Real.orderedAddCommMonoid))) (AddGroupSeminormClass.toAddLEAddHomClass.{u3, u3, 0} (Seminorm.{u4, u3} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u4, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u4, u3} π E (CommMonoidWithZero.toZero.{u4} π (CommGroupWithZero.toCommMonoidWithZero.{u4} π (Semifield.toCommGroupWithZero.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u4, u3} π E (Semiring.toMonoidWithZero.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u4, u3} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) E Real (AddCommGroup.toAddGroup.{u3} E _inst_2) Real.orderedAddCommMonoid (SeminormClass.toAddGroupSeminormClass.{u3, u4, u3} (Seminorm.{u4, u3} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u4, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u4, u3} π E (CommMonoidWithZero.toZero.{u4} π (CommGroupWithZero.toCommMonoidWithZero.{u4} π (Semifield.toCommGroupWithZero.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u4, u3} π E (Semiring.toMonoidWithZero.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u4, u3} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u4, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u4, u3} π E (CommMonoidWithZero.toZero.{u4} π (CommGroupWithZero.toCommMonoidWithZero.{u4} π (Semifield.toCommGroupWithZero.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u4, u3} π E (Semiring.toMonoidWithZero.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u4, u3} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3)))) (Seminorm.instSeminormClass.{u4, u3} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u4, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u4, u3} π E (CommMonoidWithZero.toZero.{u4} π (CommGroupWithZero.toCommMonoidWithZero.{u4} π (Semifield.toCommGroupWithZero.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u4, u3} π E (Semiring.toMonoidWithZero.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u4, u3} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3)))))))) (p i) (HSub.hSub.{u3, u3, u3} E E E (instHSub.{u3} E (SubNegMonoid.toSub.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_2)))) (u x) yβ)) Ξ΅)))))
+<too large>
Case conversion may be inaccurate. Consider using '#align with_seminorms.tendsto_nhds_at_top WithSeminorms.tendsto_nhds_atTopβ'. -/
/-- Limit `β β` for `with_seminorms`. -/
theorem WithSeminorms.tendsto_nhds_atTop (hp : WithSeminorms p) (u : F β E) (yβ : E) :
@@ -639,10 +582,7 @@ theorem SeminormFamily.withSeminorms_of_hasBasis (p : SeminormFamily π E ΞΉ)
#align seminorm_family.with_seminorms_of_has_basis SeminormFamily.withSeminorms_of_hasBasis
/- warning: seminorm_family.with_seminorms_iff_nhds_eq_infi -> SeminormFamily.withSeminorms_iff_nhds_eq_iInf is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [t : TopologicalSpace.{u2} E] [_inst_4 : TopologicalAddGroup.{u2} E t (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_5 : Nonempty.{succ u3} ΞΉ] (p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3), Iff (WithSeminorms.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_5 p t) (Eq.{succ u2} (Filter.{u2} E) (nhds.{u2} E t (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))))))) (iInf.{u2, succ u3} (Filter.{u2} E) (ConditionallyCompleteLattice.toHasInf.{u2} (Filter.{u2} E) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} E) (Filter.completeLattice.{u2} E))) ΞΉ (fun (i : ΞΉ) => Filter.comap.{u2, 0} E Real (coeFn.{succ u2, succ u2} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (fun (_x : Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) => E -> Real) (Seminorm.hasCoeToFun.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (p i)) (nhds.{0} Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))))))
-but is expected to have type
- forall {π : Type.{u3}} {E : Type.{u2}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u3} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [t : Nonempty.{succ u1} ΞΉ] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] (p : SeminormFamily.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3), Iff (WithSeminorms.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 t p _inst_4) (Eq.{succ u2} (Filter.{u2} E) (nhds.{u2} E _inst_4 (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2)))))))) (iInf.{u2, succ u1} (Filter.{u2} E) (ConditionallyCompleteLattice.toInfSet.{u2} (Filter.{u2} E) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} E) (Filter.instCompleteLatticeFilter.{u2} E))) ΞΉ (fun (i : ΞΉ) => Filter.comap.{u2, 0} E Real (FunLike.coe.{succ u2, succ u2, 1} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) E (fun (_x : E) => (fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) _x) (SubadditiveHomClass.toFunLike.{u2, u2, 0} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) E Real (AddZeroClass.toAdd.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real (AddCommMonoid.toAddMonoid.{0} Real (OrderedAddCommMonoid.toAddCommMonoid.{0} Real Real.orderedAddCommMonoid)))) (Preorder.toLE.{0} Real (PartialOrder.toPreorder.{0} Real (OrderedAddCommMonoid.toPartialOrder.{0} Real Real.orderedAddCommMonoid))) (AddGroupSeminormClass.toAddLEAddHomClass.{u2, u2, 0} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) E Real (AddCommGroup.toAddGroup.{u2} E _inst_2) Real.orderedAddCommMonoid (SeminormClass.toAddGroupSeminormClass.{u2, u3, u2} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (Seminorm.instSeminormClass.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))))))) (p i)) (nhds.{0} Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))))))
+<too large>
Case conversion may be inaccurate. Consider using '#align seminorm_family.with_seminorms_iff_nhds_eq_infi SeminormFamily.withSeminorms_iff_nhds_eq_iInfβ'. -/
theorem SeminormFamily.withSeminorms_iff_nhds_eq_iInf (p : SeminormFamily π E ΞΉ) :
WithSeminorms p β (π 0 : Filter E) = β¨
i, (π 0).comap (p i) :=
@@ -654,10 +594,7 @@ theorem SeminormFamily.withSeminorms_iff_nhds_eq_iInf (p : SeminormFamily π E
#align seminorm_family.with_seminorms_iff_nhds_eq_infi SeminormFamily.withSeminorms_iff_nhds_eq_iInf
/- warning: with_seminorms.continuous_seminorm -> WithSeminorms.continuous_seminorm is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_2 : AddCommGroup.{u2} E] [t : TopologicalSpace.{u2} E] [_inst_4 : TopologicalAddGroup.{u2} E t (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_5 : Nonempty.{succ u3} ΞΉ] [_inst_6 : NontriviallyNormedField.{u1} π] [_inst_7 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_6))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_8 : ContinuousConstSMul.{u1, u2} π E t (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_6))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_6)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_6))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_7))))] {p : SeminormFamily.{u1, u2, u3} π E ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_6) _inst_2 _inst_7}, (WithSeminorms.{u1, u2, u3} π E ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_6) _inst_2 _inst_7 _inst_5 p t) -> (forall (i : ΞΉ), Continuous.{u2, 0} E Real t (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (coeFn.{succ u2, succ u2} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_6)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_6))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_6)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_6))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_7))))) (fun (_x : Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_6)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_6))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_6)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_6))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_7))))) => E -> Real) (Seminorm.hasCoeToFun.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_6)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_6))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_6)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_6))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_7))))) (p i)))
-but is expected to have type
- forall {π : Type.{u3}} {E : Type.{u2}} {ΞΉ : Type.{u1}} [_inst_2 : AddCommGroup.{u2} E] [t : Nonempty.{succ u1} ΞΉ] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : NontriviallyNormedField.{u3} π] [_inst_7 : Module.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_8 : ContinuousConstSMul.{u3, u2} π E _inst_4 (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_7))))] {p : SeminormFamily.{u3, u2, u1} π E ΞΉ (NontriviallyNormedField.toNormedField.{u3} π _inst_6) _inst_2 _inst_7}, (WithSeminorms.{u3, u2, u1} π E ΞΉ (NontriviallyNormedField.toNormedField.{u3} π _inst_6) _inst_2 _inst_7 t p _inst_4) -> (forall (i : ΞΉ), Continuous.{u2, 0} E Real _inst_4 (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (FunLike.coe.{succ u2, succ u2, 1} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_7))))) E (fun (_x : E) => (fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) _x) (SubadditiveHomClass.toFunLike.{u2, u2, 0} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_7))))) E Real (AddZeroClass.toAdd.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real (AddCommMonoid.toAddMonoid.{0} Real (OrderedAddCommMonoid.toAddCommMonoid.{0} Real Real.orderedAddCommMonoid)))) (Preorder.toLE.{0} Real (PartialOrder.toPreorder.{0} Real (OrderedAddCommMonoid.toPartialOrder.{0} Real Real.orderedAddCommMonoid))) (AddGroupSeminormClass.toAddLEAddHomClass.{u2, u2, 0} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_7))))) E Real (AddCommGroup.toAddGroup.{u2} E _inst_2) Real.orderedAddCommMonoid (SeminormClass.toAddGroupSeminormClass.{u2, u3, u2} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_7))))) π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_7)))) (Seminorm.instSeminormClass.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_7)))))))) (p i)))
+<too large>
Case conversion may be inaccurate. Consider using '#align with_seminorms.continuous_seminorm WithSeminorms.continuous_seminormβ'. -/
theorem WithSeminorms.continuous_seminorm [NontriviallyNormedField π] [Module π E]
[ContinuousConstSMul π E] {p : SeminormFamily π E ΞΉ} (hp : WithSeminorms p) (i : ΞΉ) :
@@ -668,10 +605,7 @@ theorem WithSeminorms.continuous_seminorm [NontriviallyNormedField π] [Module
#align with_seminorms.continuous_seminorm WithSeminorms.continuous_seminorm
/- warning: seminorm_family.with_seminorms_iff_topological_space_eq_infi -> SeminormFamily.withSeminorms_iff_topologicalSpace_eq_iInf is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [t : TopologicalSpace.{u2} E] [_inst_4 : TopologicalAddGroup.{u2} E t (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_5 : Nonempty.{succ u3} ΞΉ] (p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3), Iff (WithSeminorms.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_5 p t) (Eq.{succ u2} (TopologicalSpace.{u2} E) t (iInf.{u2, succ u3} (TopologicalSpace.{u2} E) (ConditionallyCompleteLattice.toHasInf.{u2} (TopologicalSpace.{u2} E) (CompleteLattice.toConditionallyCompleteLattice.{u2} (TopologicalSpace.{u2} E) (TopologicalSpace.completeLattice.{u2} E))) ΞΉ (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (AddGroupSeminorm.toSeminormedAddCommGroup.{u2} E _inst_2 (Seminorm.toAddGroupSeminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (p i))))))))
-but is expected to have type
- forall {π : Type.{u3}} {E : Type.{u2}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u3} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [t : Nonempty.{succ u1} ΞΉ] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] (p : SeminormFamily.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3), Iff (WithSeminorms.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 t p _inst_4) (Eq.{succ u2} (TopologicalSpace.{u2} E) _inst_4 (iInf.{u2, succ u1} (TopologicalSpace.{u2} E) (ConditionallyCompleteLattice.toInfSet.{u2} (TopologicalSpace.{u2} E) (CompleteLattice.toConditionallyCompleteLattice.{u2} (TopologicalSpace.{u2} E) (TopologicalSpace.instCompleteLatticeTopologicalSpace.{u2} E))) ΞΉ (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (AddGroupSeminorm.toSeminormedAddCommGroup.{u2} E _inst_2 (Seminorm.toAddGroupSeminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (p i))))))))
+<too large>
Case conversion may be inaccurate. Consider using '#align seminorm_family.with_seminorms_iff_topological_space_eq_infi SeminormFamily.withSeminorms_iff_topologicalSpace_eq_iInfβ'. -/
/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `congrm #[[expr Β«expr = Β»(_, Β«exprβ¨
, Β»((i), _))]] -/
/-- The topology induced by a family of seminorms is exactly the infimum of the ones induced by
@@ -693,10 +627,7 @@ theorem SeminormFamily.withSeminorms_iff_topologicalSpace_eq_iInf (p : SeminormF
omit t
/- warning: seminorm_family.with_seminorms_iff_uniform_space_eq_infi -> SeminormFamily.withSeminorms_iff_uniformSpace_eq_iInf is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_5 : Nonempty.{succ u3} ΞΉ] [u : UniformSpace.{u2} E] [_inst_6 : UniformAddGroup.{u2} E u (AddCommGroup.toAddGroup.{u2} E _inst_2)] (p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3), Iff (WithSeminorms.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_5 p (UniformSpace.toTopologicalSpace.{u2} E u)) (Eq.{succ u2} (UniformSpace.{u2} E) u (iInf.{u2, succ u3} (UniformSpace.{u2} E) (UniformSpace.hasInf.{u2} E) ΞΉ (fun (i : ΞΉ) => PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (AddGroupSeminorm.toSeminormedAddCommGroup.{u2} E _inst_2 (Seminorm.toAddGroupSeminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (p i)))))))
-but is expected to have type
- forall {π : Type.{u2}} {E : Type.{u3}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u2} π] [_inst_2 : AddCommGroup.{u3} E] [_inst_3 : Module.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] [_inst_5 : Nonempty.{succ u1} ΞΉ] [u : UniformSpace.{u3} E] [_inst_6 : UniformAddGroup.{u3} E u (AddCommGroup.toAddGroup.{u3} E _inst_2)] (p : SeminormFamily.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3), Iff (WithSeminorms.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_5 p (UniformSpace.toTopologicalSpace.{u3} E u)) (Eq.{succ u3} (UniformSpace.{u3} E) u (iInf.{u3, succ u1} (UniformSpace.{u3} E) (instInfSetUniformSpace.{u3} E) ΞΉ (fun (i : ΞΉ) => PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (AddGroupSeminorm.toSeminormedAddCommGroup.{u3} E _inst_2 (Seminorm.toAddGroupSeminorm.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3)))) (p i)))))))
+<too large>
Case conversion may be inaccurate. Consider using '#align seminorm_family.with_seminorms_iff_uniform_space_eq_infi SeminormFamily.withSeminorms_iff_uniformSpace_eq_iInfβ'. -/
/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `congrm #[[expr Β«expr = Β»(_, Β«exprβ¨
, Β»((i), _))]] -/
/-- The uniform structure induced by a family of seminorms is exactly the infimum of the ones
@@ -759,10 +690,7 @@ variable {p : SeminormFamily π E ΞΉ}
variable [TopologicalSpace E]
/- warning: with_seminorms.is_vonN_bounded_iff_finset_seminorm_bounded -> WithSeminorms.isVonNBounded_iff_finset_seminorm_bounded is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u3} ΞΉ] {p : SeminormFamily.{u1, u2, u3} π E ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2 _inst_3} [_inst_5 : TopologicalSpace.{u2} E] {s : Set.{u2} E}, (WithSeminorms.{u1, u2, u3} π E ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2 _inst_3 _inst_4 p _inst_5) -> (Iff (Bornology.IsVonNBounded.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) _inst_5 s) (forall (I : Finset.{u3} ΞΉ), Exists.{1} Real (fun (r : Real) => Exists.{0} (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) (fun (hr : LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) => forall (x : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x s) -> (LT.lt.{0} Real Real.hasLt (coeFn.{succ u2, succ u2} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (fun (_x : Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) => E -> Real) (Seminorm.hasCoeToFun.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (Finset.sup.{u2, u3} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) ΞΉ (Seminorm.semilatticeSup.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (Seminorm.orderBot.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) _inst_2 _inst_3) I p) x) r)))))
-but is expected to have type
- forall {π : Type.{u2}} {E : Type.{u3}} {ΞΉ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u2} π] [_inst_2 : AddCommGroup.{u3} E] [_inst_3 : Module.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] [_inst_4 : Nonempty.{succ u1} ΞΉ] {p : SeminormFamily.{u2, u3, u1} π E ΞΉ (NontriviallyNormedField.toNormedField.{u2} π _inst_1) _inst_2 _inst_3} [_inst_5 : TopologicalSpace.{u3} E] {s : Set.{u3} E}, (WithSeminorms.{u2, u3, u1} π E ΞΉ (NontriviallyNormedField.toNormedField.{u2} π _inst_1) _inst_2 _inst_3 _inst_4 p _inst_5) -> (Iff (Bornology.IsVonNBounded.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3)))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) _inst_5 s) (forall (I : Finset.{u1} ΞΉ), Exists.{1} Real (fun (r : Real) => And (GT.gt.{0} Real Real.instLTReal r (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))) (forall (x : E), (Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) x s) -> (LT.lt.{0} ((fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) x) Real.instLTReal (FunLike.coe.{succ u3, succ u3, 1} (Seminorm.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) E (fun (a : E) => (fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) a) (SubadditiveHomClass.toFunLike.{u3, u3, 0} (Seminorm.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) E Real (AddZeroClass.toAdd.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_2))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real (AddCommMonoid.toAddMonoid.{0} Real (OrderedAddCommMonoid.toAddCommMonoid.{0} Real Real.orderedAddCommMonoid)))) (Preorder.toLE.{0} Real (PartialOrder.toPreorder.{0} Real (OrderedAddCommMonoid.toPartialOrder.{0} Real Real.orderedAddCommMonoid))) (AddGroupSeminormClass.toAddLEAddHomClass.{u3, u3, 0} (Seminorm.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) E Real (AddCommGroup.toAddGroup.{u3} E _inst_2) Real.orderedAddCommMonoid (SeminormClass.toAddGroupSeminormClass.{u3, u2, u3} (Seminorm.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3)))) (Seminorm.instSeminormClass.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3)))))))) (Finset.sup.{u3, u1} (Seminorm.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) ΞΉ (Seminorm.instSemilatticeSup.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) (Seminorm.instOrderBot.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))) _inst_2 _inst_3) I p) x) r)))))
+<too large>
Case conversion may be inaccurate. Consider using '#align with_seminorms.is_vonN_bounded_iff_finset_seminorm_bounded WithSeminorms.isVonNBounded_iff_finset_seminorm_boundedβ'. -/
theorem WithSeminorms.isVonNBounded_iff_finset_seminorm_bounded {s : Set E} (hp : WithSeminorms p) :
Bornology.IsVonNBounded π s β β I : Finset ΞΉ, β (r : _)(hr : 0 < r), β x β s, I.sup p x < r :=
@@ -790,10 +718,7 @@ theorem WithSeminorms.isVonNBounded_iff_finset_seminorm_bounded {s : Set E} (hp
#align with_seminorms.is_vonN_bounded_iff_finset_seminorm_bounded WithSeminorms.isVonNBounded_iff_finset_seminorm_bounded
/- warning: with_seminorms.image_is_vonN_bounded_iff_finset_seminorm_bounded -> WithSeminorms.image_isVonNBounded_iff_finset_seminorm_bounded is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} {G : Type.{u3}} {ΞΉ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u4} ΞΉ] {p : SeminormFamily.{u1, u2, u4} π E ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2 _inst_3} [_inst_5 : TopologicalSpace.{u2} E] (f : G -> E) {s : Set.{u3} G}, (WithSeminorms.{u1, u2, u4} π E ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2 _inst_3 _inst_4 p _inst_5) -> (Iff (Bornology.IsVonNBounded.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) _inst_5 (Set.image.{u3, u2} G E f s)) (forall (I : Finset.{u4} ΞΉ), Exists.{1} Real (fun (r : Real) => Exists.{0} (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) (fun (hr : LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) => forall (x : G), (Membership.Mem.{u3, u3} G (Set.{u3} G) (Set.hasMem.{u3} G) x s) -> (LT.lt.{0} Real Real.hasLt (coeFn.{succ u2, succ u2} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (fun (_x : Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) => E -> Real) (Seminorm.hasCoeToFun.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (Finset.sup.{u2, u4} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) ΞΉ (Seminorm.semilatticeSup.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (Seminorm.orderBot.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) _inst_2 _inst_3) I p) (f x)) r)))))
-but is expected to have type
- forall {π : Type.{u3}} {E : Type.{u2}} {G : Type.{u4}} {ΞΉ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u3} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u1} ΞΉ] {p : SeminormFamily.{u3, u2, u1} π E ΞΉ (NontriviallyNormedField.toNormedField.{u3} π _inst_1) _inst_2 _inst_3} [_inst_5 : TopologicalSpace.{u2} E] (f : G -> E) {s : Set.{u4} G}, (WithSeminorms.{u3, u2, u1} π E ΞΉ (NontriviallyNormedField.toNormedField.{u3} π _inst_1) _inst_2 _inst_3 _inst_4 p _inst_5) -> (Iff (Bornology.IsVonNBounded.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) _inst_5 (Set.image.{u4, u2} G E f s)) (forall (I : Finset.{u1} ΞΉ), Exists.{1} Real (fun (r : Real) => And (GT.gt.{0} Real Real.instLTReal r (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))) (forall (x : G), (Membership.mem.{u4, u4} G (Set.{u4} G) (Set.instMembershipSet.{u4} G) x s) -> (LT.lt.{0} ((fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) (f x)) Real.instLTReal (FunLike.coe.{succ u2, succ u2, 1} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) E (fun (a : E) => (fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) a) (SubadditiveHomClass.toFunLike.{u2, u2, 0} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) E Real (AddZeroClass.toAdd.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real (AddCommMonoid.toAddMonoid.{0} Real (OrderedAddCommMonoid.toAddCommMonoid.{0} Real Real.orderedAddCommMonoid)))) (Preorder.toLE.{0} Real (PartialOrder.toPreorder.{0} Real (OrderedAddCommMonoid.toPartialOrder.{0} Real Real.orderedAddCommMonoid))) (AddGroupSeminormClass.toAddLEAddHomClass.{u2, u2, 0} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) E Real (AddCommGroup.toAddGroup.{u2} E _inst_2) Real.orderedAddCommMonoid (SeminormClass.toAddGroupSeminormClass.{u2, u3, u2} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (Seminorm.instSeminormClass.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))))))) (Finset.sup.{u2, u1} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) ΞΉ (Seminorm.instSemilatticeSup.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (Seminorm.instOrderBot.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))) _inst_2 _inst_3) I p) (f x)) r)))))
+<too large>
Case conversion may be inaccurate. Consider using '#align with_seminorms.image_is_vonN_bounded_iff_finset_seminorm_bounded WithSeminorms.image_isVonNBounded_iff_finset_seminorm_boundedβ'. -/
theorem WithSeminorms.image_isVonNBounded_iff_finset_seminorm_bounded (f : G β E) {s : Set G}
(hp : WithSeminorms p) :
@@ -803,10 +728,7 @@ theorem WithSeminorms.image_isVonNBounded_iff_finset_seminorm_bounded (f : G β
#align with_seminorms.image_is_vonN_bounded_iff_finset_seminorm_bounded WithSeminorms.image_isVonNBounded_iff_finset_seminorm_bounded
/- warning: with_seminorms.is_vonN_bounded_iff_seminorm_bounded -> WithSeminorms.isVonNBounded_iff_seminorm_bounded is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u3} ΞΉ] {p : SeminormFamily.{u1, u2, u3} π E ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2 _inst_3} [_inst_5 : TopologicalSpace.{u2} E] {s : Set.{u2} E}, (WithSeminorms.{u1, u2, u3} π E ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2 _inst_3 _inst_4 p _inst_5) -> (Iff (Bornology.IsVonNBounded.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) _inst_5 s) (forall (i : ΞΉ), Exists.{1} Real (fun (r : Real) => Exists.{0} (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) (fun (hr : LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) => forall (x : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x s) -> (LT.lt.{0} Real Real.hasLt (coeFn.{succ u2, succ u2} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (fun (_x : Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) => E -> Real) (Seminorm.hasCoeToFun.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (p i) x) r)))))
-but is expected to have type
- forall {π : Type.{u2}} {E : Type.{u3}} {ΞΉ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u2} π] [_inst_2 : AddCommGroup.{u3} E] [_inst_3 : Module.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] [_inst_4 : Nonempty.{succ u1} ΞΉ] {p : SeminormFamily.{u2, u3, u1} π E ΞΉ (NontriviallyNormedField.toNormedField.{u2} π _inst_1) _inst_2 _inst_3} [_inst_5 : TopologicalSpace.{u3} E] {s : Set.{u3} E}, (WithSeminorms.{u2, u3, u1} π E ΞΉ (NontriviallyNormedField.toNormedField.{u2} π _inst_1) _inst_2 _inst_3 _inst_4 p _inst_5) -> (Iff (Bornology.IsVonNBounded.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3)))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) _inst_5 s) (forall (i : ΞΉ), Exists.{1} Real (fun (r : Real) => And (GT.gt.{0} Real Real.instLTReal r (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))) (forall (x : E), (Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) x s) -> (LT.lt.{0} ((fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) x) Real.instLTReal (FunLike.coe.{succ u3, succ u3, 1} (Seminorm.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) E (fun (a : E) => (fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) a) (SubadditiveHomClass.toFunLike.{u3, u3, 0} (Seminorm.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) E Real (AddZeroClass.toAdd.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_2))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real (AddCommMonoid.toAddMonoid.{0} Real (OrderedAddCommMonoid.toAddCommMonoid.{0} Real Real.orderedAddCommMonoid)))) (Preorder.toLE.{0} Real (PartialOrder.toPreorder.{0} Real (OrderedAddCommMonoid.toPartialOrder.{0} Real Real.orderedAddCommMonoid))) (AddGroupSeminormClass.toAddLEAddHomClass.{u3, u3, 0} (Seminorm.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) E Real (AddCommGroup.toAddGroup.{u3} E _inst_2) Real.orderedAddCommMonoid (SeminormClass.toAddGroupSeminormClass.{u3, u2, u3} (Seminorm.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3)))) (Seminorm.instSeminormClass.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3)))))))) (p i) x) r)))))
+<too large>
Case conversion may be inaccurate. Consider using '#align with_seminorms.is_vonN_bounded_iff_seminorm_bounded WithSeminorms.isVonNBounded_iff_seminorm_boundedβ'. -/
theorem WithSeminorms.isVonNBounded_iff_seminorm_bounded {s : Set E} (hp : WithSeminorms p) :
Bornology.IsVonNBounded π s β β i : ΞΉ, β (r : _)(hr : 0 < r), β x β s, p i x < r :=
@@ -832,10 +754,7 @@ theorem WithSeminorms.isVonNBounded_iff_seminorm_bounded {s : Set E} (hp : WithS
#align with_seminorms.is_vonN_bounded_iff_seminorm_bounded WithSeminorms.isVonNBounded_iff_seminorm_bounded
/- warning: with_seminorms.image_is_vonN_bounded_iff_seminorm_bounded -> WithSeminorms.image_isVonNBounded_iff_seminorm_bounded is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} {G : Type.{u3}} {ΞΉ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u4} ΞΉ] {p : SeminormFamily.{u1, u2, u4} π E ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2 _inst_3} [_inst_5 : TopologicalSpace.{u2} E] (f : G -> E) {s : Set.{u3} G}, (WithSeminorms.{u1, u2, u4} π E ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2 _inst_3 _inst_4 p _inst_5) -> (Iff (Bornology.IsVonNBounded.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) _inst_5 (Set.image.{u3, u2} G E f s)) (forall (i : ΞΉ), Exists.{1} Real (fun (r : Real) => Exists.{0} (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) (fun (hr : LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) => forall (x : G), (Membership.Mem.{u3, u3} G (Set.{u3} G) (Set.hasMem.{u3} G) x s) -> (LT.lt.{0} Real Real.hasLt (coeFn.{succ u2, succ u2} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (fun (_x : Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) => E -> Real) (Seminorm.hasCoeToFun.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (p i) (f x)) r)))))
-but is expected to have type
- forall {π : Type.{u3}} {E : Type.{u2}} {G : Type.{u4}} {ΞΉ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u3} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u1} ΞΉ] {p : SeminormFamily.{u3, u2, u1} π E ΞΉ (NontriviallyNormedField.toNormedField.{u3} π _inst_1) _inst_2 _inst_3} [_inst_5 : TopologicalSpace.{u2} E] (f : G -> E) {s : Set.{u4} G}, (WithSeminorms.{u3, u2, u1} π E ΞΉ (NontriviallyNormedField.toNormedField.{u3} π _inst_1) _inst_2 _inst_3 _inst_4 p _inst_5) -> (Iff (Bornology.IsVonNBounded.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) _inst_5 (Set.image.{u4, u2} G E f s)) (forall (i : ΞΉ), Exists.{1} Real (fun (r : Real) => And (GT.gt.{0} Real Real.instLTReal r (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))) (forall (x : G), (Membership.mem.{u4, u4} G (Set.{u4} G) (Set.instMembershipSet.{u4} G) x s) -> (LT.lt.{0} ((fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) (f x)) Real.instLTReal (FunLike.coe.{succ u2, succ u2, 1} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) E (fun (a : E) => (fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) a) (SubadditiveHomClass.toFunLike.{u2, u2, 0} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) E Real (AddZeroClass.toAdd.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real (AddCommMonoid.toAddMonoid.{0} Real (OrderedAddCommMonoid.toAddCommMonoid.{0} Real Real.orderedAddCommMonoid)))) (Preorder.toLE.{0} Real (PartialOrder.toPreorder.{0} Real (OrderedAddCommMonoid.toPartialOrder.{0} Real Real.orderedAddCommMonoid))) (AddGroupSeminormClass.toAddLEAddHomClass.{u2, u2, 0} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) E Real (AddCommGroup.toAddGroup.{u2} E _inst_2) Real.orderedAddCommMonoid (SeminormClass.toAddGroupSeminormClass.{u2, u3, u2} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (Seminorm.instSeminormClass.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))))))) (p i) (f x)) r)))))
+<too large>
Case conversion may be inaccurate. Consider using '#align with_seminorms.image_is_vonN_bounded_iff_seminorm_bounded WithSeminorms.image_isVonNBounded_iff_seminorm_boundedβ'. -/
theorem WithSeminorms.image_isVonNBounded_iff_seminorm_bounded (f : G β E) {s : Set G}
(hp : WithSeminorms p) :
@@ -864,10 +783,7 @@ variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [Nonempty ΞΉ] [Nonempty ΞΉ']
/- warning: seminorm.continuous_of_continuous_comp -> Seminorm.continuous_of_continuous_comp is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {πβ : Type.{u2}} {E : Type.{u3}} {F : Type.{u4}} {ΞΉ' : Type.{u5}} [_inst_2 : AddCommGroup.{u3} E] [_inst_4 : NormedField.{u1} π] [_inst_5 : Module.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] [_inst_7 : AddCommGroup.{u4} F] [_inst_9 : NormedField.{u2} πβ] [_inst_10 : Module.{u2, u4} πβ F (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] {Οββ : RingHom.{u1, u2} π πβ (NonAssocRing.toNonAssocSemiring.{u1} π (Ring.toNonAssocRing.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (NonAssocRing.toNonAssocSemiring.{u2} πβ (Ring.toNonAssocRing.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))))} [_inst_12 : RingHomIsometric.{u1, u2} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))) (NormedField.toHasNorm.{u1} π _inst_4) (NormedField.toHasNorm.{u2} πβ _inst_9) Οββ] [_inst_14 : Nonempty.{succ u5} ΞΉ'] {q : SeminormFamily.{u2, u4, u5} πβ F ΞΉ' _inst_9 _inst_7 _inst_10} [_inst_15 : TopologicalSpace.{u3} E] [_inst_16 : TopologicalAddGroup.{u3} E _inst_15 (AddCommGroup.toAddGroup.{u3} E _inst_2)] [_inst_17 : TopologicalSpace.{u4} F] [_inst_18 : TopologicalAddGroup.{u4} F _inst_17 (AddCommGroup.toAddGroup.{u4} F _inst_7)], (WithSeminorms.{u2, u4, u5} πβ F ΞΉ' _inst_9 _inst_7 _inst_10 _inst_14 q _inst_17) -> (forall (f : LinearMap.{u1, u2, u3, u4} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_5 _inst_10), (forall (i : ΞΉ'), Continuous.{u3, 0} E Real _inst_15 (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (coeFn.{succ u3, succ u3} (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_5))))) (fun (_x : Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_5))))) => E -> Real) (Seminorm.hasCoeToFun.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_5))))) (Seminorm.comp.{u1, u2, u3, u4} π πβ E F (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (SeminormedCommRing.toSemiNormedRing.{u2} πβ (NormedCommRing.toSeminormedCommRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9))) Οββ _inst_12 _inst_2 _inst_7 _inst_5 _inst_10 (q i) f))) -> (Continuous.{u3, u4} E F _inst_15 _inst_17 (coeFn.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (LinearMap.{u1, u2, u3, u4} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_5 _inst_10) (fun (_x : LinearMap.{u1, u2, u3, u4} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_5 _inst_10) => E -> F) (LinearMap.hasCoeToFun.{u1, u2, u3, u4} π πβ E F (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_5 _inst_10 Οββ) f)))
-but is expected to have type
- forall {π : Type.{u1}} {πβ : Type.{u5}} {E : Type.{u2}} {F : Type.{u4}} {ΞΉ' : Type.{u3}} [_inst_2 : AddCommGroup.{u2} E] [_inst_4 : NormedField.{u1} π] [_inst_5 : Module.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_7 : AddCommGroup.{u4} F] [_inst_9 : NormedField.{u5} πβ] [_inst_10 : Module.{u5, u4} πβ F (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ _inst_9)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] {Οββ : RingHom.{u1, u5} π πβ (Semiring.toNonAssocSemiring.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_4))))) (Semiring.toNonAssocSemiring.{u5} πβ (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ _inst_9)))))} [_inst_12 : RingHomIsometric.{u1, u5} π πβ (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_4)))) (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ _inst_9)))) (NormedField.toNorm.{u1} π _inst_4) (NormedField.toNorm.{u5} πβ _inst_9) Οββ] [_inst_14 : Nonempty.{succ u3} ΞΉ'] {q : SeminormFamily.{u5, u4, u3} πβ F ΞΉ' _inst_9 _inst_7 _inst_10} [_inst_15 : TopologicalSpace.{u2} E] [_inst_16 : TopologicalAddGroup.{u2} E _inst_15 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_17 : TopologicalSpace.{u4} F] [_inst_18 : TopologicalAddGroup.{u4} F _inst_17 (AddCommGroup.toAddGroup.{u4} F _inst_7)], (WithSeminorms.{u5, u4, u3} πβ F ΞΉ' _inst_9 _inst_7 _inst_10 _inst_14 q _inst_17) -> (forall (f : LinearMap.{u1, u5, u2, u4} π πβ (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_4)))) (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ _inst_9)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_5 _inst_10), (forall (i : ΞΉ'), Continuous.{u2, 0} E Real _inst_15 (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (FunLike.coe.{succ u2, succ u2, 1} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (MonoidWithZero.toZero.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))) E (fun (_x : E) => (fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) _x) (SubadditiveHomClass.toFunLike.{u2, u2, 0} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (MonoidWithZero.toZero.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))) E Real (AddZeroClass.toAdd.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real (AddCommMonoid.toAddMonoid.{0} Real (OrderedAddCommMonoid.toAddCommMonoid.{0} Real Real.orderedAddCommMonoid)))) (Preorder.toLE.{0} Real (PartialOrder.toPreorder.{0} Real (OrderedAddCommMonoid.toPartialOrder.{0} Real Real.orderedAddCommMonoid))) (AddGroupSeminormClass.toAddLEAddHomClass.{u2, u2, 0} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (MonoidWithZero.toZero.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))) E Real (AddCommGroup.toAddGroup.{u2} E _inst_2) Real.orderedAddCommMonoid (SeminormClass.toAddGroupSeminormClass.{u2, u1, u2} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (MonoidWithZero.toZero.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))) π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (MonoidWithZero.toZero.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5)))) (Seminorm.instSeminormClass.{u1, u2} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (MonoidWithZero.toZero.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5)))))))) (Seminorm.comp.{u1, u5, u2, u4} π πβ E F (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (SeminormedCommRing.toSeminormedRing.{u5} πβ (NormedCommRing.toSeminormedCommRing.{u5} πβ (NormedField.toNormedCommRing.{u5} πβ _inst_9))) Οββ _inst_12 _inst_2 _inst_7 _inst_5 _inst_10 (q i) f))) -> (Continuous.{u2, u4} E F _inst_15 _inst_17 (FunLike.coe.{max (succ u2) (succ u4), succ u2, succ u4} (LinearMap.{u1, u5, u2, u4} π πβ (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_4)))) (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ _inst_9)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_5 _inst_10) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => F) _x) (LinearMap.instFunLikeLinearMap.{u1, u5, u2, u4} π πβ E F (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_4)))) (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ _inst_9)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_5 _inst_10 Οββ) f)))
+<too large>
Case conversion may be inaccurate. Consider using '#align seminorm.continuous_of_continuous_comp Seminorm.continuous_of_continuous_compβ'. -/
theorem continuous_of_continuous_comp {q : SeminormFamily πβ F ΞΉ'} [TopologicalSpace E]
[TopologicalAddGroup E] [TopologicalSpace F] [TopologicalAddGroup F] (hq : WithSeminorms q)
@@ -882,10 +798,7 @@ theorem continuous_of_continuous_comp {q : SeminormFamily πβ F ΞΉ'} [Topolo
#align seminorm.continuous_of_continuous_comp Seminorm.continuous_of_continuous_comp
/- warning: seminorm.continuous_iff_continuous_comp -> Seminorm.continuous_iff_continuous_comp is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {πβ : Type.{u2}} {E : Type.{u3}} {F : Type.{u4}} {ΞΉ' : Type.{u5}} [_inst_1 : NontriviallyNormedField.{u1} π] [_inst_2 : AddCommGroup.{u3} E] [_inst_3 : Module.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] [_inst_6 : NontriviallyNormedField.{u2} πβ] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u2, u4} πβ F (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_6))))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] {Οββ : RingHom.{u1, u2} π πβ (NonAssocRing.toNonAssocSemiring.{u1} π (Ring.toNonAssocRing.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NonAssocRing.toNonAssocSemiring.{u2} πβ (Ring.toNonAssocRing.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_6))))))} [_inst_11 : RingHomIsometric.{u1, u2} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_6))))) (NormedField.toHasNorm.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)) (NormedField.toHasNorm.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_6)) Οββ] [_inst_14 : Nonempty.{succ u5} ΞΉ'] {q : SeminormFamily.{u2, u4, u5} πβ F ΞΉ' (NontriviallyNormedField.toNormedField.{u2} πβ _inst_6) _inst_7 _inst_8} [_inst_15 : TopologicalSpace.{u3} E] [_inst_16 : TopologicalAddGroup.{u3} E _inst_15 (AddCommGroup.toAddGroup.{u3} E _inst_2)] [_inst_17 : TopologicalSpace.{u4} F] [_inst_18 : TopologicalAddGroup.{u4} F _inst_17 (AddCommGroup.toAddGroup.{u4} F _inst_7)] [_inst_19 : ContinuousConstSMul.{u2, u4} πβ F _inst_17 (SMulZeroClass.toHasSmul.{u2, u4} πβ F (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)))) (SMulWithZero.toSmulZeroClass.{u2, u4} πβ F (MulZeroClass.toHasZero.{u2} πβ (MulZeroOneClass.toMulZeroClass.{u2} πβ (MonoidWithZero.toMulZeroOneClass.{u2} πβ (Semiring.toMonoidWithZero.{u2} πβ (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_6))))))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)))) (MulActionWithZero.toSMulWithZero.{u2, u4} πβ F (Semiring.toMonoidWithZero.{u2} πβ (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_6)))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)))) (Module.toMulActionWithZero.{u2, u4} πβ F (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_6))))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_8))))], (WithSeminorms.{u2, u4, u5} πβ F ΞΉ' (NontriviallyNormedField.toNormedField.{u2} πβ _inst_6) _inst_7 _inst_8 _inst_14 q _inst_17) -> (forall (f : LinearMap.{u1, u2, u3, u4} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_6))))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_3 _inst_8), Iff (Continuous.{u3, u4} E F _inst_15 _inst_17 (coeFn.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (LinearMap.{u1, u2, u3, u4} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_6))))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_3 _inst_8) (fun (_x : LinearMap.{u1, u2, u3, u4} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_6))))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_3 _inst_8) => E -> F) (LinearMap.hasCoeToFun.{u1, u2, u3, u4} π πβ E F (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_6))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_3 _inst_8 Οββ) f)) (forall (i : ΞΉ'), Continuous.{u3, 0} E Real _inst_15 (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (coeFn.{succ u3, succ u3} (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) (fun (_x : Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) => E -> Real) (Seminorm.hasCoeToFun.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) (Seminorm.comp.{u1, u2, u3, u4} π πβ E F (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (SeminormedCommRing.toSemiNormedRing.{u2} πβ (NormedCommRing.toSeminormedCommRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_6)))) Οββ _inst_11 _inst_2 _inst_7 _inst_3 _inst_8 (q i) f))))
-but is expected to have type
- forall {π : Type.{u1}} {πβ : Type.{u5}} {E : Type.{u2}} {F : Type.{u4}} {ΞΉ' : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_6 : NontriviallyNormedField.{u5} πβ] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u5, u4} πβ F (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ (NontriviallyNormedField.toNormedField.{u5} πβ _inst_6))))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] {Οββ : RingHom.{u1, u5} π πβ (Semiring.toNonAssocSemiring.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (Semiring.toNonAssocSemiring.{u5} πβ (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ (NontriviallyNormedField.toNormedField.{u5} πβ _inst_6))))))} [_inst_11 : RingHomIsometric.{u1, u5} π πβ (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ (NontriviallyNormedField.toNormedField.{u5} πβ _inst_6))))) (NormedField.toNorm.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)) (NormedField.toNorm.{u5} πβ (NontriviallyNormedField.toNormedField.{u5} πβ _inst_6)) Οββ] [_inst_14 : Nonempty.{succ u3} ΞΉ'] {q : SeminormFamily.{u5, u4, u3} πβ F ΞΉ' (NontriviallyNormedField.toNormedField.{u5} πβ _inst_6) _inst_7 _inst_8} [_inst_15 : TopologicalSpace.{u2} E] [_inst_16 : TopologicalAddGroup.{u2} E _inst_15 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_17 : TopologicalSpace.{u4} F] [_inst_18 : TopologicalAddGroup.{u4} F _inst_17 (AddCommGroup.toAddGroup.{u4} F _inst_7)] [_inst_19 : ContinuousConstSMul.{u5, u4} πβ F _inst_17 (SMulZeroClass.toSMul.{u5, u4} πβ F (NegZeroClass.toZero.{u4} F (SubNegZeroMonoid.toNegZeroClass.{u4} F (SubtractionMonoid.toSubNegZeroMonoid.{u4} F (SubtractionCommMonoid.toSubtractionMonoid.{u4} F (AddCommGroup.toDivisionAddCommMonoid.{u4} F _inst_7))))) (SMulWithZero.toSMulZeroClass.{u5, u4} πβ F (CommMonoidWithZero.toZero.{u5} πβ (CommGroupWithZero.toCommMonoidWithZero.{u5} πβ (Semifield.toCommGroupWithZero.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ (NontriviallyNormedField.toNormedField.{u5} πβ _inst_6)))))) (NegZeroClass.toZero.{u4} F (SubNegZeroMonoid.toNegZeroClass.{u4} F (SubtractionMonoid.toSubNegZeroMonoid.{u4} F (SubtractionCommMonoid.toSubtractionMonoid.{u4} F (AddCommGroup.toDivisionAddCommMonoid.{u4} F _inst_7))))) (MulActionWithZero.toSMulWithZero.{u5, u4} πβ F (Semiring.toMonoidWithZero.{u5} πβ (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ (NontriviallyNormedField.toNormedField.{u5} πβ _inst_6)))))) (NegZeroClass.toZero.{u4} F (SubNegZeroMonoid.toNegZeroClass.{u4} F (SubtractionMonoid.toSubNegZeroMonoid.{u4} F (SubtractionCommMonoid.toSubtractionMonoid.{u4} F (AddCommGroup.toDivisionAddCommMonoid.{u4} F _inst_7))))) (Module.toMulActionWithZero.{u5, u4} πβ F (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ (NontriviallyNormedField.toNormedField.{u5} πβ _inst_6))))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_8))))], (WithSeminorms.{u5, u4, u3} πβ F ΞΉ' (NontriviallyNormedField.toNormedField.{u5} πβ _inst_6) _inst_7 _inst_8 _inst_14 q _inst_17) -> (forall (f : LinearMap.{u1, u5, u2, u4} π πβ (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ (NontriviallyNormedField.toNormedField.{u5} πβ _inst_6))))) Οββ E F (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_3 _inst_8), Iff (Continuous.{u2, u4} E F _inst_15 _inst_17 (FunLike.coe.{max (succ u2) (succ u4), succ u2, succ u4} (LinearMap.{u1, u5, u2, u4} π πβ (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ (NontriviallyNormedField.toNormedField.{u5} πβ _inst_6))))) Οββ E F (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_3 _inst_8) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => F) _x) (LinearMap.instFunLikeLinearMap.{u1, u5, u2, u4} π πβ E F (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ (NontriviallyNormedField.toNormedField.{u5} πβ _inst_6))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_3 _inst_8 Οββ) f)) (forall (i : ΞΉ'), Continuous.{u2, 0} E Real _inst_15 (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (FunLike.coe.{succ u2, succ u2, 1} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (MonoidWithZero.toZero.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) E (fun (_x : E) => (fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) _x) (SubadditiveHomClass.toFunLike.{u2, u2, 0} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (MonoidWithZero.toZero.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) E Real (AddZeroClass.toAdd.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real (AddCommMonoid.toAddMonoid.{0} Real (OrderedAddCommMonoid.toAddCommMonoid.{0} Real Real.orderedAddCommMonoid)))) (Preorder.toLE.{0} Real (PartialOrder.toPreorder.{0} Real (OrderedAddCommMonoid.toPartialOrder.{0} Real Real.orderedAddCommMonoid))) (AddGroupSeminormClass.toAddLEAddHomClass.{u2, u2, 0} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (MonoidWithZero.toZero.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) E Real (AddCommGroup.toAddGroup.{u2} E _inst_2) Real.orderedAddCommMonoid (SeminormClass.toAddGroupSeminormClass.{u2, u1, u2} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (MonoidWithZero.toZero.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (MonoidWithZero.toZero.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (Seminorm.instSeminormClass.{u1, u2} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (MonoidWithZero.toZero.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))))))) (Seminorm.comp.{u1, u5, u2, u4} π πβ E F (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (SeminormedCommRing.toSeminormedRing.{u5} πβ (NormedCommRing.toSeminormedCommRing.{u5} πβ (NormedField.toNormedCommRing.{u5} πβ (NontriviallyNormedField.toNormedField.{u5} πβ _inst_6)))) Οββ _inst_11 _inst_2 _inst_7 _inst_3 _inst_8 (q i) f))))
+<too large>
Case conversion may be inaccurate. Consider using '#align seminorm.continuous_iff_continuous_comp Seminorm.continuous_iff_continuous_compβ'. -/
theorem continuous_iff_continuous_comp {q : SeminormFamily πβ F ΞΉ'} [TopologicalSpace E]
[TopologicalAddGroup E] [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousConstSMul πβ F]
@@ -894,10 +807,7 @@ theorem continuous_iff_continuous_comp {q : SeminormFamily πβ F ΞΉ'} [Topol
#align seminorm.continuous_iff_continuous_comp Seminorm.continuous_iff_continuous_comp
/- warning: seminorm.continuous_from_bounded -> Seminorm.continuous_from_bounded is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {πβ : Type.{u2}} {E : Type.{u3}} {F : Type.{u4}} {ΞΉ : Type.{u5}} {ΞΉ' : Type.{u6}} [_inst_2 : AddCommGroup.{u3} E] [_inst_4 : NormedField.{u1} π] [_inst_5 : Module.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] [_inst_7 : AddCommGroup.{u4} F] [_inst_9 : NormedField.{u2} πβ] [_inst_10 : Module.{u2, u4} πβ F (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] {Οββ : RingHom.{u1, u2} π πβ (NonAssocRing.toNonAssocSemiring.{u1} π (Ring.toNonAssocRing.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (NonAssocRing.toNonAssocSemiring.{u2} πβ (Ring.toNonAssocRing.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))))} [_inst_12 : RingHomIsometric.{u1, u2} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))) (NormedField.toHasNorm.{u1} π _inst_4) (NormedField.toHasNorm.{u2} πβ _inst_9) Οββ] [_inst_13 : Nonempty.{succ u5} ΞΉ] [_inst_14 : Nonempty.{succ u6} ΞΉ'] {p : SeminormFamily.{u1, u3, u5} π E ΞΉ _inst_4 _inst_2 _inst_5} {q : SeminormFamily.{u2, u4, u6} πβ F ΞΉ' _inst_9 _inst_7 _inst_10} [_inst_15 : TopologicalSpace.{u3} E] [_inst_16 : TopologicalAddGroup.{u3} E _inst_15 (AddCommGroup.toAddGroup.{u3} E _inst_2)], (WithSeminorms.{u1, u3, u5} π E ΞΉ _inst_4 _inst_2 _inst_5 _inst_13 p _inst_15) -> (forall [_inst_17 : TopologicalSpace.{u4} F] [_inst_18 : TopologicalAddGroup.{u4} F _inst_17 (AddCommGroup.toAddGroup.{u4} F _inst_7)], (WithSeminorms.{u2, u4, u6} πβ F ΞΉ' _inst_9 _inst_7 _inst_10 _inst_14 q _inst_17) -> (forall (f : LinearMap.{u1, u2, u3, u4} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_5 _inst_10), (Seminorm.IsBounded.{u1, u2, u3, u4, u5, u6} π πβ E F ΞΉ ΞΉ' _inst_4 _inst_2 _inst_5 _inst_9 _inst_7 _inst_10 Οββ _inst_12 p q f) -> (Continuous.{u3, u4} E F _inst_15 _inst_17 (coeFn.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (LinearMap.{u1, u2, u3, u4} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_5 _inst_10) (fun (_x : LinearMap.{u1, u2, u3, u4} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_5 _inst_10) => E -> F) (LinearMap.hasCoeToFun.{u1, u2, u3, u4} π πβ E F (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_5 _inst_10 Οββ) f))))
-but is expected to have type
- forall {π : Type.{u6}} {πβ : Type.{u3}} {E : Type.{u5}} {F : Type.{u2}} {ΞΉ : Type.{u4}} {ΞΉ' : Type.{u1}} [_inst_2 : AddCommGroup.{u5} E] [_inst_4 : NormedField.{u6} π] [_inst_5 : Module.{u6, u5} π E (DivisionSemiring.toSemiring.{u6} π (Semifield.toDivisionSemiring.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_4)))) (AddCommGroup.toAddCommMonoid.{u5} E _inst_2)] [_inst_7 : AddCommGroup.{u2} F] [_inst_9 : NormedField.{u3} πβ] [_inst_10 : Module.{u3, u2} πβ F (DivisionSemiring.toSemiring.{u3} πβ (Semifield.toDivisionSemiring.{u3} πβ (Field.toSemifield.{u3} πβ (NormedField.toField.{u3} πβ _inst_9)))) (AddCommGroup.toAddCommMonoid.{u2} F _inst_7)] {Οββ : RingHom.{u6, u3} π πβ (Semiring.toNonAssocSemiring.{u6} π (DivisionSemiring.toSemiring.{u6} π (Semifield.toDivisionSemiring.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_4))))) (Semiring.toNonAssocSemiring.{u3} πβ (DivisionSemiring.toSemiring.{u3} πβ (Semifield.toDivisionSemiring.{u3} πβ (Field.toSemifield.{u3} πβ (NormedField.toField.{u3} πβ _inst_9)))))} [_inst_12 : RingHomIsometric.{u6, u3} π πβ (DivisionSemiring.toSemiring.{u6} π (Semifield.toDivisionSemiring.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_4)))) (DivisionSemiring.toSemiring.{u3} πβ (Semifield.toDivisionSemiring.{u3} πβ (Field.toSemifield.{u3} πβ (NormedField.toField.{u3} πβ _inst_9)))) (NormedField.toNorm.{u6} π _inst_4) (NormedField.toNorm.{u3} πβ _inst_9) Οββ] [_inst_13 : Nonempty.{succ u4} ΞΉ] [_inst_14 : Nonempty.{succ u1} ΞΉ'] {p : SeminormFamily.{u6, u5, u4} π E ΞΉ _inst_4 _inst_2 _inst_5} {q : SeminormFamily.{u3, u2, u1} πβ F ΞΉ' _inst_9 _inst_7 _inst_10} [_inst_15 : TopologicalSpace.{u5} E] [_inst_16 : TopologicalAddGroup.{u5} E _inst_15 (AddCommGroup.toAddGroup.{u5} E _inst_2)], (WithSeminorms.{u6, u5, u4} π E ΞΉ _inst_4 _inst_2 _inst_5 _inst_13 p _inst_15) -> (forall [_inst_17 : TopologicalSpace.{u2} F] [_inst_18 : TopologicalAddGroup.{u2} F _inst_17 (AddCommGroup.toAddGroup.{u2} F _inst_7)], (WithSeminorms.{u3, u2, u1} πβ F ΞΉ' _inst_9 _inst_7 _inst_10 _inst_14 q _inst_17) -> (forall (f : LinearMap.{u6, u3, u5, u2} π πβ (DivisionSemiring.toSemiring.{u6} π (Semifield.toDivisionSemiring.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_4)))) (DivisionSemiring.toSemiring.{u3} πβ (Semifield.toDivisionSemiring.{u3} πβ (Field.toSemifield.{u3} πβ (NormedField.toField.{u3} πβ _inst_9)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u5} E _inst_2) (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_5 _inst_10), (Seminorm.IsBounded.{u6, u3, u5, u2, u4, u1} π πβ E F ΞΉ ΞΉ' _inst_4 _inst_2 _inst_5 _inst_9 _inst_7 _inst_10 Οββ _inst_12 p q f) -> (Continuous.{u5, u2} E F _inst_15 _inst_17 (FunLike.coe.{max (succ u5) (succ u2), succ u5, succ u2} (LinearMap.{u6, u3, u5, u2} π πβ (DivisionSemiring.toSemiring.{u6} π (Semifield.toDivisionSemiring.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_4)))) (DivisionSemiring.toSemiring.{u3} πβ (Semifield.toDivisionSemiring.{u3} πβ (Field.toSemifield.{u3} πβ (NormedField.toField.{u3} πβ _inst_9)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u5} E _inst_2) (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_5 _inst_10) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => F) _x) (LinearMap.instFunLikeLinearMap.{u6, u3, u5, u2} π πβ E F (DivisionSemiring.toSemiring.{u6} π (Semifield.toDivisionSemiring.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_4)))) (DivisionSemiring.toSemiring.{u3} πβ (Semifield.toDivisionSemiring.{u3} πβ (Field.toSemifield.{u3} πβ (NormedField.toField.{u3} πβ _inst_9)))) (AddCommGroup.toAddCommMonoid.{u5} E _inst_2) (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_5 _inst_10 Οββ) f))))
+<too large>
Case conversion may be inaccurate. Consider using '#align seminorm.continuous_from_bounded Seminorm.continuous_from_boundedβ'. -/
theorem continuous_from_bounded {p : SeminormFamily π E ΞΉ} {q : SeminormFamily πβ F ΞΉ'}
[TopologicalSpace E] [TopologicalAddGroup E] (hp : WithSeminorms p) [TopologicalSpace F]
@@ -920,10 +830,7 @@ theorem continuous_from_bounded {p : SeminormFamily π E ΞΉ} {q : SeminormFami
#align seminorm.continuous_from_bounded Seminorm.continuous_from_bounded
/- warning: seminorm.cont_with_seminorms_normed_space -> Seminorm.cont_withSeminorms_normedSpace is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {πβ : Type.{u2}} {E : Type.{u3}} {ΞΉ : Type.{u4}} [_inst_2 : AddCommGroup.{u3} E] [_inst_4 : NormedField.{u1} π] [_inst_5 : Module.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] [_inst_9 : NormedField.{u2} πβ] {Οββ : RingHom.{u1, u2} π πβ (NonAssocRing.toNonAssocSemiring.{u1} π (Ring.toNonAssocRing.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (NonAssocRing.toNonAssocSemiring.{u2} πβ (Ring.toNonAssocRing.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))))} [_inst_12 : RingHomIsometric.{u1, u2} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))) (NormedField.toHasNorm.{u1} π _inst_4) (NormedField.toHasNorm.{u2} πβ _inst_9) Οββ] [_inst_13 : Nonempty.{succ u4} ΞΉ] (F : Type.{u5}) [_inst_15 : SeminormedAddCommGroup.{u5} F] [_inst_16 : NormedSpace.{u2, u5} πβ F _inst_9 _inst_15] [_inst_17 : UniformSpace.{u3} E] [_inst_18 : UniformAddGroup.{u3} E _inst_17 (AddCommGroup.toAddGroup.{u3} E _inst_2)] {p : ΞΉ -> (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_5)))))}, (WithSeminorms.{u1, u3, u4} π E ΞΉ _inst_4 _inst_2 _inst_5 _inst_13 p (UniformSpace.toTopologicalSpace.{u3} E _inst_17)) -> (forall (f : LinearMap.{u1, u2, u3, u5} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u5} F (SeminormedAddCommGroup.toAddCommGroup.{u5} F _inst_15)) _inst_5 (NormedSpace.toModule.{u2, u5} πβ F _inst_9 _inst_15 _inst_16)), (Exists.{succ u4} (Finset.{u4} ΞΉ) (fun (s : Finset.{u4} ΞΉ) => Exists.{1} NNReal (fun (C : NNReal) => LE.le.{u3} (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_5))))) (Preorder.toHasLe.{u3} (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_5))))) (PartialOrder.toPreorder.{u3} (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_5))))) (Seminorm.partialOrder.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_5))))))) (Seminorm.comp.{u1, u2, u3, u5} π πβ E F (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (SeminormedCommRing.toSemiNormedRing.{u2} πβ (NormedCommRing.toSeminormedCommRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9))) Οββ _inst_12 _inst_2 (SeminormedAddCommGroup.toAddCommGroup.{u5} F _inst_15) _inst_5 (NormedSpace.toModule.{u2, u5} πβ F _inst_9 _inst_15 _inst_16) (normSeminorm.{u2, u5} πβ F _inst_9 _inst_15 _inst_16) f) (SMul.smul.{0, u3} NNReal (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_5))))) (Seminorm.hasSmul.{0, u1, u3} NNReal π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_5)))) (MulAction.toHasSmul.{0, 0} NNReal Real (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal NNReal.semiring)) (NNReal.mulAction.{0} Real (Monoid.toMulAction.{0} Real Real.monoid))) (Mul.toSMul.{0} NNReal (MulOneClass.toHasMul.{0} NNReal (Monoid.toMulOneClass.{0} NNReal (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal NNReal.semiring))))) (IsScalarTower.left.{0, 0} NNReal Real (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal NNReal.semiring)) (NNReal.mulAction.{0} Real (Monoid.toMulAction.{0} Real Real.monoid)))) C (Finset.sup.{u3, u4} (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_5))))) ΞΉ (Seminorm.semilatticeSup.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_5))))) (Seminorm.orderBot.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) _inst_2 _inst_5) s p))))) -> (Continuous.{u3, u5} E F (UniformSpace.toTopologicalSpace.{u3} E _inst_17) (UniformSpace.toTopologicalSpace.{u5} F (PseudoMetricSpace.toUniformSpace.{u5} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u5} F _inst_15))) (coeFn.{max (succ u3) (succ u5), max (succ u3) (succ u5)} (LinearMap.{u1, u2, u3, u5} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u5} F (SeminormedAddCommGroup.toAddCommGroup.{u5} F _inst_15)) _inst_5 (NormedSpace.toModule.{u2, u5} πβ F _inst_9 _inst_15 _inst_16)) (fun (_x : LinearMap.{u1, u2, u3, u5} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u5} F (SeminormedAddCommGroup.toAddCommGroup.{u5} F _inst_15)) _inst_5 (NormedSpace.toModule.{u2, u5} πβ F _inst_9 _inst_15 _inst_16)) => E -> F) (LinearMap.hasCoeToFun.{u1, u2, u3, u5} π πβ E F (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u5} F (SeminormedAddCommGroup.toAddCommGroup.{u5} F _inst_15)) _inst_5 (NormedSpace.toModule.{u2, u5} πβ F _inst_9 _inst_15 _inst_16) Οββ) f)))
-but is expected to have type
- forall {π : Type.{u2}} {πβ : Type.{u4}} {E : Type.{u3}} {ΞΉ : Type.{u1}} [_inst_2 : AddCommGroup.{u3} E] [_inst_4 : NormedField.{u2} π] [_inst_5 : Module.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] [_inst_9 : NormedField.{u4} πβ] {Οββ : RingHom.{u2, u4} π πβ (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4))))) (Semiring.toNonAssocSemiring.{u4} πβ (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_9)))))} [_inst_12 : RingHomIsometric.{u2, u4} π πβ (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4)))) (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_9)))) (NormedField.toNorm.{u2} π _inst_4) (NormedField.toNorm.{u4} πβ _inst_9) Οββ] [_inst_13 : Nonempty.{succ u1} ΞΉ] (F : Type.{u5}) [_inst_15 : SeminormedAddCommGroup.{u5} F] [_inst_16 : NormedSpace.{u4, u5} πβ F _inst_9 _inst_15] [_inst_17 : UniformSpace.{u3} E] [_inst_18 : UniformAddGroup.{u3} E _inst_17 (AddCommGroup.toAddGroup.{u3} E _inst_2)] {p : ΞΉ -> (Seminorm.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_5)))))}, (WithSeminorms.{u2, u3, u1} π E ΞΉ _inst_4 _inst_2 _inst_5 _inst_13 p (UniformSpace.toTopologicalSpace.{u3} E _inst_17)) -> (forall (f : LinearMap.{u2, u4, u3, u5} π πβ (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4)))) (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_9)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u5} F (SeminormedAddCommGroup.toAddCommGroup.{u5} F _inst_15)) _inst_5 (NormedSpace.toModule.{u4, u5} πβ F _inst_9 _inst_15 _inst_16)), (Exists.{succ u1} (Finset.{u1} ΞΉ) (fun (s : Finset.{u1} ΞΉ) => Exists.{1} NNReal (fun (C : NNReal) => LE.le.{u3} (Seminorm.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (MonoidWithZero.toZero.{u2} π (Semiring.toMonoidWithZero.{u2} π (Ring.toSemiring.{u2} π (SeminormedRing.toRing.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4))))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (Ring.toSemiring.{u2} π (SeminormedRing.toRing.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (Ring.toSemiring.{u2} π (SeminormedRing.toRing.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_5))))) (Preorder.toLE.{u3} (Seminorm.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (MonoidWithZero.toZero.{u2} π (Semiring.toMonoidWithZero.{u2} π (Ring.toSemiring.{u2} π (SeminormedRing.toRing.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4))))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (Ring.toSemiring.{u2} π (SeminormedRing.toRing.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (Ring.toSemiring.{u2} π (SeminormedRing.toRing.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_5))))) (PartialOrder.toPreorder.{u3} (Seminorm.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (MonoidWithZero.toZero.{u2} π (Semiring.toMonoidWithZero.{u2} π (Ring.toSemiring.{u2} π (SeminormedRing.toRing.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4))))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (Ring.toSemiring.{u2} π (SeminormedRing.toRing.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (Ring.toSemiring.{u2} π (SeminormedRing.toRing.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_5))))) (Seminorm.instPartialOrder.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (MonoidWithZero.toZero.{u2} π (Semiring.toMonoidWithZero.{u2} π (Ring.toSemiring.{u2} π (SeminormedRing.toRing.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4))))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (Ring.toSemiring.{u2} π (SeminormedRing.toRing.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (Ring.toSemiring.{u2} π (SeminormedRing.toRing.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_5))))))) (Seminorm.comp.{u2, u4, u3, u5} π πβ E F (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4))) (SeminormedCommRing.toSeminormedRing.{u4} πβ (NormedCommRing.toSeminormedCommRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ _inst_9))) Οββ _inst_12 _inst_2 (SeminormedAddCommGroup.toAddCommGroup.{u5} F _inst_15) _inst_5 (NormedSpace.toModule.{u4, u5} πβ F _inst_9 _inst_15 _inst_16) (normSeminorm.{u4, u5} πβ F _inst_9 _inst_15 _inst_16) f) (HSMul.hSMul.{0, u3, u3} NNReal (Seminorm.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_5))))) (Seminorm.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_5))))) (instHSMul.{0, u3} NNReal (Seminorm.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_5))))) (Seminorm.instSMul.{0, u2, u3} NNReal π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_5)))) Seminorm.smul_nnreal_real (Algebra.toSMul.{0, 0} NNReal NNReal instNNRealCommSemiring instNNRealSemiring (Algebra.id.{0} NNReal instNNRealCommSemiring)) (IsScalarTower.left.{0, 0} NNReal Real (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal instNNRealSemiring)) (NNReal.instMulActionNNRealToMonoidToMonoidWithZeroInstNNRealSemiring.{0} Real (MulActionWithZero.toMulAction.{0, 0} Real Real Real.instMonoidWithZeroReal Real.instZeroReal (MonoidWithZero.toMulActionWithZero.{0} Real Real.instMonoidWithZeroReal)))))) C (Finset.sup.{u3, u1} (Seminorm.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_5))))) ΞΉ (Seminorm.instSemilatticeSup.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_5))))) (Seminorm.instOrderBot.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4))) _inst_2 _inst_5) s p))))) -> (Continuous.{u3, u5} E F (UniformSpace.toTopologicalSpace.{u3} E _inst_17) (UniformSpace.toTopologicalSpace.{u5} F (PseudoMetricSpace.toUniformSpace.{u5} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u5} F _inst_15))) (FunLike.coe.{max (succ u3) (succ u5), succ u3, succ u5} (LinearMap.{u2, u4, u3, u5} π πβ (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4)))) (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_9)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u5} F (SeminormedAddCommGroup.toAddCommGroup.{u5} F _inst_15)) _inst_5 (NormedSpace.toModule.{u4, u5} πβ F _inst_9 _inst_15 _inst_16)) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => F) _x) (LinearMap.instFunLikeLinearMap.{u2, u4, u3, u5} π πβ E F (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4)))) (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_9)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u5} F (SeminormedAddCommGroup.toAddCommGroup.{u5} F _inst_15)) _inst_5 (NormedSpace.toModule.{u4, u5} πβ F _inst_9 _inst_15 _inst_16) Οββ) f)))
+<too large>
Case conversion may be inaccurate. Consider using '#align seminorm.cont_with_seminorms_normed_space Seminorm.cont_withSeminorms_normedSpaceβ'. -/
theorem cont_withSeminorms_normedSpace (F) [SeminormedAddCommGroup F] [NormedSpace πβ F]
[UniformSpace E] [UniformAddGroup E] {p : ΞΉ β Seminorm π E} (hp : WithSeminorms p)
@@ -934,10 +841,7 @@ theorem cont_withSeminorms_normedSpace (F) [SeminormedAddCommGroup F] [NormedSpa
#align seminorm.cont_with_seminorms_normed_space Seminorm.cont_withSeminorms_normedSpace
/- warning: seminorm.cont_normed_space_to_with_seminorms -> Seminorm.cont_normedSpace_to_withSeminorms is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {πβ : Type.{u2}} {F : Type.{u3}} {ΞΉ : Type.{u4}} [_inst_4 : NormedField.{u1} π] [_inst_7 : AddCommGroup.{u3} F] [_inst_9 : NormedField.{u2} πβ] [_inst_10 : Module.{u2, u3} πβ F (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] {Οββ : RingHom.{u1, u2} π πβ (NonAssocRing.toNonAssocSemiring.{u1} π (Ring.toNonAssocRing.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (NonAssocRing.toNonAssocSemiring.{u2} πβ (Ring.toNonAssocRing.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))))} [_inst_12 : RingHomIsometric.{u1, u2} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))) (NormedField.toHasNorm.{u1} π _inst_4) (NormedField.toHasNorm.{u2} πβ _inst_9) Οββ] [_inst_13 : Nonempty.{succ u4} ΞΉ] (E : Type.{u5}) [_inst_15 : SeminormedAddCommGroup.{u5} E] [_inst_16 : NormedSpace.{u1, u5} π E _inst_4 _inst_15] [_inst_17 : UniformSpace.{u3} F] [_inst_18 : UniformAddGroup.{u3} F _inst_17 (AddCommGroup.toAddGroup.{u3} F _inst_7)] {q : ΞΉ -> (Seminorm.{u2, u3} πβ F (SeminormedCommRing.toSemiNormedRing.{u2} πβ (NormedCommRing.toSeminormedCommRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9))) (AddCommGroup.toAddGroup.{u3} F _inst_7) (SMulZeroClass.toHasSmul.{u2, u3} πβ F (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (SMulWithZero.toSmulZeroClass.{u2, u3} πβ F (MulZeroClass.toHasZero.{u2} πβ (MulZeroOneClass.toMulZeroClass.{u2} πβ (MonoidWithZero.toMulZeroOneClass.{u2} πβ (Semiring.toMonoidWithZero.{u2} πβ (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (MulActionWithZero.toSMulWithZero.{u2, u3} πβ F (Semiring.toMonoidWithZero.{u2} πβ (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (Module.toMulActionWithZero.{u2, u3} πβ F (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_10)))))}, (WithSeminorms.{u2, u3, u4} πβ F ΞΉ _inst_9 _inst_7 _inst_10 _inst_13 q (UniformSpace.toTopologicalSpace.{u3} F _inst_17)) -> (forall (f : LinearMap.{u1, u2, u5, u3} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (NormedSpace.toModule.{u1, u5} π E _inst_4 _inst_15 _inst_16) _inst_10), (forall (i : ΞΉ), Exists.{1} NNReal (fun (C : NNReal) => LE.le.{u5} (Seminorm.{u1, u5} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (AddCommGroup.toAddGroup.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (SMulZeroClass.toHasSmul.{u1, u5} π E (AddZeroClass.toHasZero.{u5} E (AddMonoid.toAddZeroClass.{u5} E (AddCommMonoid.toAddMonoid.{u5} E (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15))))) (SMulWithZero.toSmulZeroClass.{u1, u5} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))))))) (AddZeroClass.toHasZero.{u5} E (AddMonoid.toAddZeroClass.{u5} E (AddCommMonoid.toAddMonoid.{u5} E (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15))))) (MulActionWithZero.toSMulWithZero.{u1, u5} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))))) (AddZeroClass.toHasZero.{u5} E (AddMonoid.toAddZeroClass.{u5} E (AddCommMonoid.toAddMonoid.{u5} E (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15))))) (Module.toMulActionWithZero.{u1, u5} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (NormedSpace.toModule.{u1, u5} π E _inst_4 _inst_15 _inst_16)))))) (Preorder.toHasLe.{u5} (Seminorm.{u1, u5} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (AddCommGroup.toAddGroup.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (SMulZeroClass.toHasSmul.{u1, u5} π E (AddZeroClass.toHasZero.{u5} E (AddMonoid.toAddZeroClass.{u5} E (AddCommMonoid.toAddMonoid.{u5} E (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15))))) (SMulWithZero.toSmulZeroClass.{u1, u5} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))))))) (AddZeroClass.toHasZero.{u5} E (AddMonoid.toAddZeroClass.{u5} E (AddCommMonoid.toAddMonoid.{u5} E (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15))))) (MulActionWithZero.toSMulWithZero.{u1, u5} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))))) (AddZeroClass.toHasZero.{u5} E (AddMonoid.toAddZeroClass.{u5} E (AddCommMonoid.toAddMonoid.{u5} E (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15))))) (Module.toMulActionWithZero.{u1, u5} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (NormedSpace.toModule.{u1, u5} π E _inst_4 _inst_15 _inst_16)))))) (PartialOrder.toPreorder.{u5} (Seminorm.{u1, u5} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (AddCommGroup.toAddGroup.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (SMulZeroClass.toHasSmul.{u1, u5} π E (AddZeroClass.toHasZero.{u5} E (AddMonoid.toAddZeroClass.{u5} E (AddCommMonoid.toAddMonoid.{u5} E (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15))))) (SMulWithZero.toSmulZeroClass.{u1, u5} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))))))) (AddZeroClass.toHasZero.{u5} E (AddMonoid.toAddZeroClass.{u5} E (AddCommMonoid.toAddMonoid.{u5} E (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15))))) (MulActionWithZero.toSMulWithZero.{u1, u5} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))))) (AddZeroClass.toHasZero.{u5} E (AddMonoid.toAddZeroClass.{u5} E (AddCommMonoid.toAddMonoid.{u5} E (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15))))) (Module.toMulActionWithZero.{u1, u5} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (NormedSpace.toModule.{u1, u5} π E _inst_4 _inst_15 _inst_16)))))) (Seminorm.partialOrder.{u1, u5} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (AddCommGroup.toAddGroup.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (SMulZeroClass.toHasSmul.{u1, u5} π E (AddZeroClass.toHasZero.{u5} E (AddMonoid.toAddZeroClass.{u5} E (AddCommMonoid.toAddMonoid.{u5} E (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15))))) (SMulWithZero.toSmulZeroClass.{u1, u5} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))))))) (AddZeroClass.toHasZero.{u5} E (AddMonoid.toAddZeroClass.{u5} E (AddCommMonoid.toAddMonoid.{u5} E (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15))))) (MulActionWithZero.toSMulWithZero.{u1, u5} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))))) (AddZeroClass.toHasZero.{u5} E (AddMonoid.toAddZeroClass.{u5} E (AddCommMonoid.toAddMonoid.{u5} E (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15))))) (Module.toMulActionWithZero.{u1, u5} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (NormedSpace.toModule.{u1, u5} π E _inst_4 _inst_15 _inst_16)))))))) (Seminorm.comp.{u1, u2, u5, u3} π πβ E F (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (SeminormedCommRing.toSemiNormedRing.{u2} πβ (NormedCommRing.toSeminormedCommRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9))) Οββ _inst_12 (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15) _inst_7 (NormedSpace.toModule.{u1, u5} π E _inst_4 _inst_15 _inst_16) _inst_10 (q i) f) (SMul.smul.{0, u5} NNReal (Seminorm.{u1, u5} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (AddCommGroup.toAddGroup.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (SMulZeroClass.toHasSmul.{u1, u5} π E (AddZeroClass.toHasZero.{u5} E (AddMonoid.toAddZeroClass.{u5} E (AddCommMonoid.toAddMonoid.{u5} E (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15))))) (SMulWithZero.toSmulZeroClass.{u1, u5} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))))))) (AddZeroClass.toHasZero.{u5} E (AddMonoid.toAddZeroClass.{u5} E (AddCommMonoid.toAddMonoid.{u5} E (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15))))) (MulActionWithZero.toSMulWithZero.{u1, u5} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))))) (AddZeroClass.toHasZero.{u5} E (AddMonoid.toAddZeroClass.{u5} E (AddCommMonoid.toAddMonoid.{u5} E (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15))))) (Module.toMulActionWithZero.{u1, u5} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (NormedSpace.toModule.{u1, u5} π E _inst_4 _inst_15 _inst_16)))))) (Seminorm.hasSmul.{0, u1, u5} NNReal π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (AddCommGroup.toAddGroup.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (SMulZeroClass.toHasSmul.{u1, u5} π E (AddZeroClass.toHasZero.{u5} E (AddMonoid.toAddZeroClass.{u5} E (AddCommMonoid.toAddMonoid.{u5} E (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15))))) (SMulWithZero.toSmulZeroClass.{u1, u5} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))))))) (AddZeroClass.toHasZero.{u5} E (AddMonoid.toAddZeroClass.{u5} E (AddCommMonoid.toAddMonoid.{u5} E (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15))))) (MulActionWithZero.toSMulWithZero.{u1, u5} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))))) (AddZeroClass.toHasZero.{u5} E (AddMonoid.toAddZeroClass.{u5} E (AddCommMonoid.toAddMonoid.{u5} E (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15))))) (Module.toMulActionWithZero.{u1, u5} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (NormedSpace.toModule.{u1, u5} π E _inst_4 _inst_15 _inst_16))))) (MulAction.toHasSmul.{0, 0} NNReal Real (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal NNReal.semiring)) (NNReal.mulAction.{0} Real (Monoid.toMulAction.{0} Real Real.monoid))) (Mul.toSMul.{0} NNReal (MulOneClass.toHasMul.{0} NNReal (Monoid.toMulOneClass.{0} NNReal (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal NNReal.semiring))))) (IsScalarTower.left.{0, 0} NNReal Real (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal NNReal.semiring)) (NNReal.mulAction.{0} Real (Monoid.toMulAction.{0} Real Real.monoid)))) C (normSeminorm.{u1, u5} π E _inst_4 _inst_15 _inst_16)))) -> (Continuous.{u5, u3} E F (UniformSpace.toTopologicalSpace.{u5} E (PseudoMetricSpace.toUniformSpace.{u5} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u5} E _inst_15))) (UniformSpace.toTopologicalSpace.{u3} F _inst_17) (coeFn.{max (succ u5) (succ u3), max (succ u5) (succ u3)} (LinearMap.{u1, u2, u5, u3} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (NormedSpace.toModule.{u1, u5} π E _inst_4 _inst_15 _inst_16) _inst_10) (fun (_x : LinearMap.{u1, u2, u5, u3} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (NormedSpace.toModule.{u1, u5} π E _inst_4 _inst_15 _inst_16) _inst_10) => E -> F) (LinearMap.hasCoeToFun.{u1, u2, u5, u3} π πβ E F (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))) (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (NormedSpace.toModule.{u1, u5} π E _inst_4 _inst_15 _inst_16) _inst_10 Οββ) f)))
-but is expected to have type
- forall {π : Type.{u4}} {πβ : Type.{u2}} {F : Type.{u3}} {ΞΉ : Type.{u1}} [_inst_4 : NormedField.{u4} π] [_inst_7 : AddCommGroup.{u3} F] [_inst_9 : NormedField.{u2} πβ] [_inst_10 : Module.{u2, u3} πβ F (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ _inst_9)))) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] {Οββ : RingHom.{u4, u2} π πβ (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_4))))) (Semiring.toNonAssocSemiring.{u2} πβ (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ _inst_9)))))} [_inst_12 : RingHomIsometric.{u4, u2} π πβ (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_4)))) (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ _inst_9)))) (NormedField.toNorm.{u4} π _inst_4) (NormedField.toNorm.{u2} πβ _inst_9) Οββ] [_inst_13 : Nonempty.{succ u1} ΞΉ] (E : Type.{u5}) [_inst_15 : SeminormedAddCommGroup.{u5} E] [_inst_16 : NormedSpace.{u4, u5} π E _inst_4 _inst_15] [_inst_17 : UniformSpace.{u3} F] [_inst_18 : UniformAddGroup.{u3} F _inst_17 (AddCommGroup.toAddGroup.{u3} F _inst_7)] {q : ΞΉ -> (Seminorm.{u2, u3} πβ F (SeminormedCommRing.toSeminormedRing.{u2} πβ (NormedCommRing.toSeminormedCommRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9))) (AddCommGroup.toAddGroup.{u3} F _inst_7) (SMulZeroClass.toSMul.{u2, u3} πβ F (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (SMulWithZero.toSMulZeroClass.{u2, u3} πβ F (CommMonoidWithZero.toZero.{u2} πβ (CommGroupWithZero.toCommMonoidWithZero.{u2} πβ (Semifield.toCommGroupWithZero.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ _inst_9))))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (MulActionWithZero.toSMulWithZero.{u2, u3} πβ F (Semiring.toMonoidWithZero.{u2} πβ (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ _inst_9))))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (Module.toMulActionWithZero.{u2, u3} πβ F (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ _inst_9)))) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_10)))))}, (WithSeminorms.{u2, u3, u1} πβ F ΞΉ _inst_9 _inst_7 _inst_10 _inst_13 q (UniformSpace.toTopologicalSpace.{u3} F _inst_17)) -> (forall (f : LinearMap.{u4, u2, u5, u3} π πβ (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_4)))) (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ _inst_9)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (NormedSpace.toModule.{u4, u5} π E _inst_4 _inst_15 _inst_16) _inst_10), (forall (i : ΞΉ), Exists.{1} NNReal (fun (C : NNReal) => LE.le.{u5} (Seminorm.{u4, u5} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_4))) (AddCommGroup.toAddGroup.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (SMulZeroClass.toSMul.{u4, u5} π E (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)))))) (SMulWithZero.toSMulZeroClass.{u4, u5} π E (MonoidWithZero.toZero.{u4} π (Semiring.toMonoidWithZero.{u4} π (Ring.toSemiring.{u4} π (SeminormedRing.toRing.{u4} π (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_4))))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)))))) (MulActionWithZero.toSMulWithZero.{u4, u5} π E (Semiring.toMonoidWithZero.{u4} π (Ring.toSemiring.{u4} π (SeminormedRing.toRing.{u4} π (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_4)))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)))))) (Module.toMulActionWithZero.{u4, u5} π E (Ring.toSemiring.{u4} π (SeminormedRing.toRing.{u4} π (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (NormedSpace.toModule.{u4, u5} π E _inst_4 _inst_15 _inst_16)))))) (Preorder.toLE.{u5} (Seminorm.{u4, u5} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_4))) (AddCommGroup.toAddGroup.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (SMulZeroClass.toSMul.{u4, u5} π E (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)))))) (SMulWithZero.toSMulZeroClass.{u4, u5} π E (MonoidWithZero.toZero.{u4} π (Semiring.toMonoidWithZero.{u4} π (Ring.toSemiring.{u4} π (SeminormedRing.toRing.{u4} π (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_4))))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)))))) (MulActionWithZero.toSMulWithZero.{u4, u5} π E (Semiring.toMonoidWithZero.{u4} π (Ring.toSemiring.{u4} π (SeminormedRing.toRing.{u4} π (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_4)))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)))))) (Module.toMulActionWithZero.{u4, u5} π E (Ring.toSemiring.{u4} π (SeminormedRing.toRing.{u4} π (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (NormedSpace.toModule.{u4, u5} π E _inst_4 _inst_15 _inst_16)))))) (PartialOrder.toPreorder.{u5} (Seminorm.{u4, u5} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_4))) (AddCommGroup.toAddGroup.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (SMulZeroClass.toSMul.{u4, u5} π E (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)))))) (SMulWithZero.toSMulZeroClass.{u4, u5} π E (MonoidWithZero.toZero.{u4} π (Semiring.toMonoidWithZero.{u4} π (Ring.toSemiring.{u4} π (SeminormedRing.toRing.{u4} π (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_4))))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)))))) (MulActionWithZero.toSMulWithZero.{u4, u5} π E (Semiring.toMonoidWithZero.{u4} π (Ring.toSemiring.{u4} π (SeminormedRing.toRing.{u4} π (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_4)))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)))))) (Module.toMulActionWithZero.{u4, u5} π E (Ring.toSemiring.{u4} π (SeminormedRing.toRing.{u4} π (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (NormedSpace.toModule.{u4, u5} π E _inst_4 _inst_15 _inst_16)))))) (Seminorm.instPartialOrder.{u4, u5} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_4))) (AddCommGroup.toAddGroup.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (SMulZeroClass.toSMul.{u4, u5} π E (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)))))) (SMulWithZero.toSMulZeroClass.{u4, u5} π E (MonoidWithZero.toZero.{u4} π (Semiring.toMonoidWithZero.{u4} π (Ring.toSemiring.{u4} π (SeminormedRing.toRing.{u4} π (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_4))))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)))))) (MulActionWithZero.toSMulWithZero.{u4, u5} π E (Semiring.toMonoidWithZero.{u4} π (Ring.toSemiring.{u4} π (SeminormedRing.toRing.{u4} π (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_4)))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)))))) (Module.toMulActionWithZero.{u4, u5} π E (Ring.toSemiring.{u4} π (SeminormedRing.toRing.{u4} π (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (NormedSpace.toModule.{u4, u5} π E _inst_4 _inst_15 _inst_16)))))))) (Seminorm.comp.{u4, u2, u5, u3} π πβ E F (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_4))) (SeminormedCommRing.toSeminormedRing.{u2} πβ (NormedCommRing.toSeminormedCommRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9))) Οββ _inst_12 (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15) _inst_7 (NormedSpace.toModule.{u4, u5} π E _inst_4 _inst_15 _inst_16) _inst_10 (q i) f) (HSMul.hSMul.{0, u5, u5} NNReal (Seminorm.{u4, u5} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_4))) (SeminormedAddGroup.toAddGroup.{u5} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u5} E _inst_15)) (SMulZeroClass.toSMul.{u4, u5} π E (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)))))) (SMulWithZero.toSMulZeroClass.{u4, u5} π E (CommMonoidWithZero.toZero.{u4} π (CommGroupWithZero.toCommMonoidWithZero.{u4} π (Semifield.toCommGroupWithZero.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_4))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)))))) (MulActionWithZero.toSMulWithZero.{u4, u5} π E (Semiring.toMonoidWithZero.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_4))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)))))) (Module.toMulActionWithZero.{u4, u5} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_4)))) (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (NormedSpace.toModule.{u4, u5} π E _inst_4 _inst_15 _inst_16)))))) (Seminorm.{u4, u5} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_4))) (SeminormedAddGroup.toAddGroup.{u5} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u5} E _inst_15)) (SMulZeroClass.toSMul.{u4, u5} π E (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)))))) (SMulWithZero.toSMulZeroClass.{u4, u5} π E (CommMonoidWithZero.toZero.{u4} π (CommGroupWithZero.toCommMonoidWithZero.{u4} π (Semifield.toCommGroupWithZero.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_4))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)))))) (MulActionWithZero.toSMulWithZero.{u4, u5} π E (Semiring.toMonoidWithZero.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_4))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)))))) (Module.toMulActionWithZero.{u4, u5} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_4)))) (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (NormedSpace.toModule.{u4, u5} π E _inst_4 _inst_15 _inst_16)))))) (instHSMul.{0, u5} NNReal (Seminorm.{u4, u5} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_4))) (SeminormedAddGroup.toAddGroup.{u5} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u5} E _inst_15)) (SMulZeroClass.toSMul.{u4, u5} π E (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)))))) (SMulWithZero.toSMulZeroClass.{u4, u5} π E (CommMonoidWithZero.toZero.{u4} π (CommGroupWithZero.toCommMonoidWithZero.{u4} π (Semifield.toCommGroupWithZero.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_4))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)))))) (MulActionWithZero.toSMulWithZero.{u4, u5} π E (Semiring.toMonoidWithZero.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_4))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)))))) (Module.toMulActionWithZero.{u4, u5} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_4)))) (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (NormedSpace.toModule.{u4, u5} π E _inst_4 _inst_15 _inst_16)))))) (Seminorm.instSMul.{0, u4, u5} NNReal π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_4))) (SeminormedAddGroup.toAddGroup.{u5} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u5} E _inst_15)) (SMulZeroClass.toSMul.{u4, u5} π E (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)))))) (SMulWithZero.toSMulZeroClass.{u4, u5} π E (CommMonoidWithZero.toZero.{u4} π (CommGroupWithZero.toCommMonoidWithZero.{u4} π (Semifield.toCommGroupWithZero.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_4))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)))))) (MulActionWithZero.toSMulWithZero.{u4, u5} π E (Semiring.toMonoidWithZero.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_4))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)))))) (Module.toMulActionWithZero.{u4, u5} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_4)))) (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (NormedSpace.toModule.{u4, u5} π E _inst_4 _inst_15 _inst_16))))) Seminorm.smul_nnreal_real (Algebra.toSMul.{0, 0} NNReal NNReal instNNRealCommSemiring instNNRealSemiring (Algebra.id.{0} NNReal instNNRealCommSemiring)) (IsScalarTower.left.{0, 0} NNReal Real (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal instNNRealSemiring)) (NNReal.instMulActionNNRealToMonoidToMonoidWithZeroInstNNRealSemiring.{0} Real (MulActionWithZero.toMulAction.{0, 0} Real Real Real.instMonoidWithZeroReal Real.instZeroReal (MonoidWithZero.toMulActionWithZero.{0} Real Real.instMonoidWithZeroReal)))))) C (normSeminorm.{u4, u5} π E _inst_4 _inst_15 _inst_16)))) -> (Continuous.{u5, u3} E F (UniformSpace.toTopologicalSpace.{u5} E (PseudoMetricSpace.toUniformSpace.{u5} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u5} E _inst_15))) (UniformSpace.toTopologicalSpace.{u3} F _inst_17) (FunLike.coe.{max (succ u3) (succ u5), succ u5, succ u3} (LinearMap.{u4, u2, u5, u3} π πβ (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_4)))) (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ _inst_9)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (NormedSpace.toModule.{u4, u5} π E _inst_4 _inst_15 _inst_16) _inst_10) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => F) _x) (LinearMap.instFunLikeLinearMap.{u4, u2, u5, u3} π πβ E F (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_4)))) (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ _inst_9)))) (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (NormedSpace.toModule.{u4, u5} π E _inst_4 _inst_15 _inst_16) _inst_10 Οββ) f)))
+<too large>
Case conversion may be inaccurate. Consider using '#align seminorm.cont_normed_space_to_with_seminorms Seminorm.cont_normedSpace_to_withSeminormsβ'. -/
theorem cont_normedSpace_to_withSeminorms (E) [SeminormedAddCommGroup E] [NormedSpace π E]
[UniformSpace F] [UniformAddGroup F] {q : ΞΉ β Seminorm πβ F} (hq : WithSeminorms q)
@@ -959,10 +863,7 @@ variable [Nonempty ΞΉ] [NormedField π] [NormedSpace β π] [AddCommGroup E
[IsScalarTower β π E] [TopologicalSpace E] [TopologicalAddGroup E]
/- warning: with_seminorms.to_locally_convex_space -> WithSeminorms.toLocallyConvexSpace is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : Nonempty.{succ u3} ΞΉ] [_inst_2 : NormedField.{u1} π] [_inst_3 : NormedSpace.{0, u1} Real π Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_2)))))] [_inst_4 : AddCommGroup.{u2} E] [_inst_5 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)] [_inst_6 : Module.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)] [_inst_7 : IsScalarTower.{0, u1, u2} Real π E (SMulZeroClass.toHasSmul.{0, u1} Real π (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (AddCommMonoid.toAddMonoid.{u1} π (AddCommGroup.toAddCommMonoid.{u1} π (SeminormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_2)))))))))) (SMulWithZero.toSmulZeroClass.{0, u1} Real π (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real (Ring.toSemiring.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField)))))))) (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (AddCommMonoid.toAddMonoid.{u1} π (AddCommGroup.toAddCommMonoid.{u1} π (SeminormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_2)))))))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real π (Semiring.toMonoidWithZero.{0} Real (Ring.toSemiring.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField))))) (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (AddCommMonoid.toAddMonoid.{u1} π (AddCommGroup.toAddCommMonoid.{u1} π (SeminormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_2)))))))))) (Module.toMulActionWithZero.{0, u1} Real π (Ring.toSemiring.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField)))) (AddCommGroup.toAddCommMonoid.{u1} π (SeminormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_2))))))) (NormedSpace.toModule.{0, u1} Real π Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_2))))) _inst_3))))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_2)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_2))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_6))))] [_inst_8 : TopologicalSpace.{u2} E] [_inst_9 : TopologicalAddGroup.{u2} E _inst_8 (AddCommGroup.toAddGroup.{u2} E _inst_4)] {p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_2 _inst_4 _inst_5}, (WithSeminorms.{u1, u2, u3} π E ΞΉ _inst_2 _inst_4 _inst_5 _inst_1 p _inst_8) -> (LocallyConvexSpace.{0, u2} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_6 _inst_8)
-but is expected to have type
- forall {π : Type.{u3}} {E : Type.{u2}} {ΞΉ : Type.{u1}} [_inst_1 : Nonempty.{succ u1} ΞΉ] [_inst_2 : NormedField.{u3} π] [_inst_3 : NormedSpace.{0, u3} Real π Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u3} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u3} π (NormedRing.toNonUnitalNormedRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_2)))))] [_inst_4 : AddCommGroup.{u2} E] [_inst_5 : Module.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)] [_inst_6 : Module.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)] [_inst_7 : IsScalarTower.{0, u3, u2} Real π E (SMulZeroClass.toSMul.{0, u3} Real π (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u3} Real π Real.instZeroReal (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u3} Real π Real.instMonoidWithZeroReal (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_2))))) (Module.toMulActionWithZero.{0, u3} Real π Real.semiring (NonUnitalNonAssocSemiring.toAddCommMonoid.{u3} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u3} π (NonAssocRing.toNonUnitalNonAssocRing.{u3} π (Ring.toNonAssocRing.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_2))))))) (NormedSpace.toModule.{0, u3} Real π Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u3} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u3} π (NormedRing.toNonUnitalNormedRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_2))))) _inst_3))))) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_2))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_2))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) (SMulZeroClass.toSMul.{0, u2} Real E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{0, u2} Real E Real.instZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_6))))] [_inst_8 : TopologicalSpace.{u2} E] [_inst_9 : TopologicalAddGroup.{u2} E _inst_8 (AddCommGroup.toAddGroup.{u2} E _inst_4)] {p : SeminormFamily.{u3, u2, u1} π E ΞΉ _inst_2 _inst_4 _inst_5}, (WithSeminorms.{u3, u2, u1} π E ΞΉ _inst_2 _inst_4 _inst_5 _inst_1 p _inst_8) -> (LocallyConvexSpace.{0, u2} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_6 _inst_8)
+<too large>
Case conversion may be inaccurate. Consider using '#align with_seminorms.to_locally_convex_space WithSeminorms.toLocallyConvexSpaceβ'. -/
theorem WithSeminorms.toLocallyConvexSpace {p : SeminormFamily π E ΞΉ} (hp : WithSeminorms p) :
LocallyConvexSpace β E :=
@@ -984,10 +885,7 @@ section NormedSpace
variable (π) [NormedField π] [NormedSpace β π] [SeminormedAddCommGroup E]
/- warning: normed_space.to_locally_convex_space' -> NormedSpace.toLocallyConvexSpace' is a dubious translation:
-lean 3 declaration is
- forall (π : Type.{u1}) {E : Type.{u2}} [_inst_1 : NormedField.{u1} π] [_inst_2 : NormedSpace.{0, u1} Real π Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))] [_inst_3 : SeminormedAddCommGroup.{u2} E] [_inst_4 : NormedSpace.{u1, u2} π E _inst_1 _inst_3] [_inst_5 : Module.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_3))] [_inst_6 : IsScalarTower.{0, u1, u2} Real π E (SMulZeroClass.toHasSmul.{0, u1} Real π (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (AddCommMonoid.toAddMonoid.{u1} π (AddCommGroup.toAddCommMonoid.{u1} π (SeminormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))))) (SMulWithZero.toSmulZeroClass.{0, u1} Real π (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real (Ring.toSemiring.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField)))))))) (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (AddCommMonoid.toAddMonoid.{u1} π (AddCommGroup.toAddCommMonoid.{u1} π (SeminormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real π (Semiring.toMonoidWithZero.{0} Real (Ring.toSemiring.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField))))) (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (AddCommMonoid.toAddMonoid.{u1} π (AddCommGroup.toAddCommMonoid.{u1} π (SeminormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))))) (Module.toMulActionWithZero.{0, u1} Real π (Ring.toSemiring.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField)))) (AddCommGroup.toAddCommMonoid.{u1} π (SeminormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))) (NormedSpace.toModule.{0, u1} Real π Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) _inst_2))))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_3))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_3))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_3)) (NormedSpace.toModule.{u1, u2} π E _inst_1 _inst_3 _inst_4))))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_3))))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_3))))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_3)) _inst_5))))], LocallyConvexSpace.{0, u2} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_3)) _inst_5 (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_3)))
-but is expected to have type
- forall (π : Type.{u2}) {E : Type.{u1}} [_inst_1 : NormedField.{u2} π] [_inst_2 : NormedSpace.{0, u2} Real π Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1)))))] [_inst_3 : SeminormedAddCommGroup.{u1} E] [_inst_4 : NormedSpace.{u2, u1} π E _inst_1 _inst_3] [_inst_5 : Module.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_3))] [_inst_6 : IsScalarTower.{0, u2, u1} Real π E (SMulZeroClass.toSMul.{0, u2} Real π (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (SMulWithZero.toSMulZeroClass.{0, u2} Real π Real.instZeroReal (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (MulActionWithZero.toSMulWithZero.{0, u2} Real π Real.instMonoidWithZeroReal (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (Module.toMulActionWithZero.{0, u2} Real π Real.semiring (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))))))) (NormedSpace.toModule.{0, u2} Real π Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))))) _inst_2))))) (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_3)))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_3)))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_3)))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_3)) (NormedSpace.toModule.{u2, u1} π E _inst_1 _inst_3 _inst_4))))) (SMulZeroClass.toSMul.{0, u1} Real E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_3)))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_3)))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_3)))))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_3)) _inst_5))))], LocallyConvexSpace.{0, u1} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_3)) _inst_5 (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_3)))
+<too large>
Case conversion may be inaccurate. Consider using '#align normed_space.to_locally_convex_space' NormedSpace.toLocallyConvexSpace'β'. -/
/-- Not an instance since `π` can't be inferred. See `normed_space.to_locally_convex_space` for a
slightly weaker instance version. -/
@@ -1022,10 +920,7 @@ def SeminormFamily.comp (q : SeminormFamily πβ F ΞΉ) (f : E βββ[Οβ
-/
/- warning: seminorm_family.comp_apply -> SeminormFamily.comp_apply is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {πβ : Type.{u2}} {E : Type.{u3}} {F : Type.{u4}} {ΞΉ : Type.{u5}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u3} E] [_inst_3 : Module.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] [_inst_4 : NormedField.{u2} πβ] [_inst_5 : AddCommGroup.{u4} F] [_inst_6 : Module.{u2, u4} πβ F (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)] {Οββ : RingHom.{u1, u2} π πβ (NonAssocRing.toNonAssocSemiring.{u1} π (Ring.toNonAssocRing.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} πβ (Ring.toNonAssocRing.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))))} [_inst_7 : RingHomIsometric.{u1, u2} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) (NormedField.toHasNorm.{u1} π _inst_1) (NormedField.toHasNorm.{u2} πβ _inst_4) Οββ] (q : SeminormFamily.{u2, u4, u5} πβ F ΞΉ _inst_4 _inst_5 _inst_6) (i : ΞΉ) (f : LinearMap.{u1, u2, u3, u4} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5) _inst_3 _inst_6), Eq.{succ u3} (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) (SeminormFamily.comp.{u1, u2, u3, u4, u5} π πβ E F ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 Οββ _inst_7 q f i) (Seminorm.comp.{u1, u2, u3, u4} π πβ E F (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (SeminormedCommRing.toSemiNormedRing.{u2} πβ (NormedCommRing.toSeminormedCommRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4))) Οββ _inst_7 _inst_2 _inst_5 _inst_3 _inst_6 (q i) f)
-but is expected to have type
- forall {π : Type.{u2}} {πβ : Type.{u5}} {E : Type.{u1}} {F : Type.{u4}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u2} π] [_inst_2 : AddCommGroup.{u1} E] [_inst_3 : Module.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2)] [_inst_4 : NormedField.{u5} πβ] [_inst_5 : AddCommGroup.{u4} F] [_inst_6 : Module.{u5, u4} πβ F (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)] {Οββ : RingHom.{u2, u5} π πβ (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (Semiring.toNonAssocSemiring.{u5} πβ (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ _inst_4)))))} [_inst_7 : RingHomIsometric.{u2, u5} π πβ (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ _inst_4)))) (NormedField.toNorm.{u2} π _inst_1) (NormedField.toNorm.{u5} πβ _inst_4) Οββ] (q : SeminormFamily.{u5, u4, u3} πβ F ΞΉ _inst_4 _inst_5 _inst_6) (i : ΞΉ) (f : LinearMap.{u2, u5, u1, u4} π πβ (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ _inst_4)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5) _inst_3 _inst_6), Eq.{succ u1} (Seminorm.{u2, u1} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))) (AddCommGroup.toAddGroup.{u1} E _inst_2) (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3))))) (SeminormFamily.comp.{u2, u5, u1, u4, u3} π πβ E F ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 Οββ _inst_7 q f i) (Seminorm.comp.{u2, u5, u1, u4} π πβ E F (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))) (SeminormedCommRing.toSeminormedRing.{u5} πβ (NormedCommRing.toSeminormedCommRing.{u5} πβ (NormedField.toNormedCommRing.{u5} πβ _inst_4))) Οββ _inst_7 _inst_2 _inst_5 _inst_3 _inst_6 (q i) f)
+<too large>
Case conversion may be inaccurate. Consider using '#align seminorm_family.comp_apply SeminormFamily.comp_applyβ'. -/
theorem SeminormFamily.comp_apply (q : SeminormFamily πβ F ΞΉ) (i : ΞΉ) (f : E βββ[Οββ] F) :
q.comp f i = (q i).comp f :=
@@ -1033,10 +928,7 @@ theorem SeminormFamily.comp_apply (q : SeminormFamily πβ F ΞΉ) (i : ΞΉ) (f
#align seminorm_family.comp_apply SeminormFamily.comp_apply
/- warning: seminorm_family.finset_sup_comp -> SeminormFamily.finset_sup_comp is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {πβ : Type.{u2}} {E : Type.{u3}} {F : Type.{u4}} {ΞΉ : Type.{u5}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u3} E] [_inst_3 : Module.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] [_inst_4 : NormedField.{u2} πβ] [_inst_5 : AddCommGroup.{u4} F] [_inst_6 : Module.{u2, u4} πβ F (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)] {Οββ : RingHom.{u1, u2} π πβ (NonAssocRing.toNonAssocSemiring.{u1} π (Ring.toNonAssocRing.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} πβ (Ring.toNonAssocRing.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))))} [_inst_7 : RingHomIsometric.{u1, u2} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) (NormedField.toHasNorm.{u1} π _inst_1) (NormedField.toHasNorm.{u2} πβ _inst_4) Οββ] (q : SeminormFamily.{u2, u4, u5} πβ F ΞΉ _inst_4 _inst_5 _inst_6) (s : Finset.{u5} ΞΉ) (f : LinearMap.{u1, u2, u3, u4} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5) _inst_3 _inst_6), Eq.{succ u3} (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) (Seminorm.comp.{u1, u2, u3, u4} π πβ E F (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (SeminormedCommRing.toSemiNormedRing.{u2} πβ (NormedCommRing.toSeminormedCommRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4))) Οββ _inst_7 _inst_2 _inst_5 _inst_3 _inst_6 (Finset.sup.{u4, u5} (Seminorm.{u2, u4} πβ F (SeminormedCommRing.toSemiNormedRing.{u2} πβ (NormedCommRing.toSeminormedCommRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4))) (AddCommGroup.toAddGroup.{u4} F _inst_5) (SMulZeroClass.toHasSmul.{u2, u4} πβ F (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)))) (SMulWithZero.toSmulZeroClass.{u2, u4} πβ F (MulZeroClass.toHasZero.{u2} πβ (MulZeroOneClass.toMulZeroClass.{u2} πβ (MonoidWithZero.toMulZeroOneClass.{u2} πβ (Semiring.toMonoidWithZero.{u2} πβ (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)))) (MulActionWithZero.toSMulWithZero.{u2, u4} πβ F (Semiring.toMonoidWithZero.{u2} πβ (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)))) (Module.toMulActionWithZero.{u2, u4} πβ F (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5) _inst_6))))) ΞΉ (Seminorm.semilatticeSup.{u2, u4} πβ F (SeminormedCommRing.toSemiNormedRing.{u2} πβ (NormedCommRing.toSeminormedCommRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4))) (AddCommGroup.toAddGroup.{u4} F _inst_5) (SMulZeroClass.toHasSmul.{u2, u4} πβ F (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)))) (SMulWithZero.toSmulZeroClass.{u2, u4} πβ F (MulZeroClass.toHasZero.{u2} πβ (MulZeroOneClass.toMulZeroClass.{u2} πβ (MonoidWithZero.toMulZeroOneClass.{u2} πβ (Semiring.toMonoidWithZero.{u2} πβ (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)))) (MulActionWithZero.toSMulWithZero.{u2, u4} πβ F (Semiring.toMonoidWithZero.{u2} πβ (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)))) (Module.toMulActionWithZero.{u2, u4} πβ F (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5) _inst_6))))) (Seminorm.orderBot.{u2, u4} πβ F (SeminormedCommRing.toSemiNormedRing.{u2} πβ (NormedCommRing.toSeminormedCommRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4))) _inst_5 _inst_6) s q) f) (Finset.sup.{u3, u5} (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) ΞΉ (Seminorm.semilatticeSup.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) (Seminorm.orderBot.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) _inst_2 _inst_3) s (SeminormFamily.comp.{u1, u2, u3, u4, u5} π πβ E F ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 Οββ _inst_7 q f))
-but is expected to have type
- forall {π : Type.{u2}} {πβ : Type.{u5}} {E : Type.{u1}} {F : Type.{u4}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u2} π] [_inst_2 : AddCommGroup.{u1} E] [_inst_3 : Module.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2)] [_inst_4 : NormedField.{u5} πβ] [_inst_5 : AddCommGroup.{u4} F] [_inst_6 : Module.{u5, u4} πβ F (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)] {Οββ : RingHom.{u2, u5} π πβ (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (Semiring.toNonAssocSemiring.{u5} πβ (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ _inst_4)))))} [_inst_7 : RingHomIsometric.{u2, u5} π πβ (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ _inst_4)))) (NormedField.toNorm.{u2} π _inst_1) (NormedField.toNorm.{u5} πβ _inst_4) Οββ] (q : SeminormFamily.{u5, u4, u3} πβ F ΞΉ _inst_4 _inst_5 _inst_6) (s : Finset.{u3} ΞΉ) (f : LinearMap.{u2, u5, u1, u4} π πβ (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ _inst_4)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5) _inst_3 _inst_6), Eq.{succ u1} (Seminorm.{u2, u1} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))) (AddCommGroup.toAddGroup.{u1} E _inst_2) (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (MonoidWithZero.toZero.{u2} π (Semiring.toMonoidWithZero.{u2} π (Ring.toSemiring.{u2} π (SeminormedRing.toRing.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (Ring.toSemiring.{u2} π (SeminormedRing.toRing.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π E (Ring.toSemiring.{u2} π (SeminormedRing.toRing.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3))))) (Seminorm.comp.{u2, u5, u1, u4} π πβ E F (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))) (SeminormedCommRing.toSeminormedRing.{u5} πβ (NormedCommRing.toSeminormedCommRing.{u5} πβ (NormedField.toNormedCommRing.{u5} πβ _inst_4))) Οββ _inst_7 _inst_2 _inst_5 _inst_3 _inst_6 (Finset.sup.{u4, u3} (Seminorm.{u5, u4} πβ F (SeminormedCommRing.toSeminormedRing.{u5} πβ (NormedCommRing.toSeminormedCommRing.{u5} πβ (NormedField.toNormedCommRing.{u5} πβ _inst_4))) (AddCommGroup.toAddGroup.{u4} F _inst_5) (SMulZeroClass.toSMul.{u5, u4} πβ F (NegZeroClass.toZero.{u4} F (SubNegZeroMonoid.toNegZeroClass.{u4} F (SubtractionMonoid.toSubNegZeroMonoid.{u4} F (SubtractionCommMonoid.toSubtractionMonoid.{u4} F (AddCommGroup.toDivisionAddCommMonoid.{u4} F _inst_5))))) (SMulWithZero.toSMulZeroClass.{u5, u4} πβ F (CommMonoidWithZero.toZero.{u5} πβ (CommGroupWithZero.toCommMonoidWithZero.{u5} πβ (Semifield.toCommGroupWithZero.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ _inst_4))))) (NegZeroClass.toZero.{u4} F (SubNegZeroMonoid.toNegZeroClass.{u4} F (SubtractionMonoid.toSubNegZeroMonoid.{u4} F (SubtractionCommMonoid.toSubtractionMonoid.{u4} F (AddCommGroup.toDivisionAddCommMonoid.{u4} F _inst_5))))) (MulActionWithZero.toSMulWithZero.{u5, u4} πβ F (Semiring.toMonoidWithZero.{u5} πβ (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ _inst_4))))) (NegZeroClass.toZero.{u4} F (SubNegZeroMonoid.toNegZeroClass.{u4} F (SubtractionMonoid.toSubNegZeroMonoid.{u4} F (SubtractionCommMonoid.toSubtractionMonoid.{u4} F (AddCommGroup.toDivisionAddCommMonoid.{u4} F _inst_5))))) (Module.toMulActionWithZero.{u5, u4} πβ F (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5) _inst_6))))) ΞΉ (Seminorm.instSemilatticeSup.{u5, u4} πβ F (SeminormedCommRing.toSeminormedRing.{u5} πβ (NormedCommRing.toSeminormedCommRing.{u5} πβ (NormedField.toNormedCommRing.{u5} πβ _inst_4))) (AddCommGroup.toAddGroup.{u4} F _inst_5) (SMulZeroClass.toSMul.{u5, u4} πβ F (NegZeroClass.toZero.{u4} F (SubNegZeroMonoid.toNegZeroClass.{u4} F (SubtractionMonoid.toSubNegZeroMonoid.{u4} F (SubtractionCommMonoid.toSubtractionMonoid.{u4} F (AddCommGroup.toDivisionAddCommMonoid.{u4} F _inst_5))))) (SMulWithZero.toSMulZeroClass.{u5, u4} πβ F (CommMonoidWithZero.toZero.{u5} πβ (CommGroupWithZero.toCommMonoidWithZero.{u5} πβ (Semifield.toCommGroupWithZero.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ _inst_4))))) (NegZeroClass.toZero.{u4} F (SubNegZeroMonoid.toNegZeroClass.{u4} F (SubtractionMonoid.toSubNegZeroMonoid.{u4} F (SubtractionCommMonoid.toSubtractionMonoid.{u4} F (AddCommGroup.toDivisionAddCommMonoid.{u4} F _inst_5))))) (MulActionWithZero.toSMulWithZero.{u5, u4} πβ F (Semiring.toMonoidWithZero.{u5} πβ (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ _inst_4))))) (NegZeroClass.toZero.{u4} F (SubNegZeroMonoid.toNegZeroClass.{u4} F (SubtractionMonoid.toSubNegZeroMonoid.{u4} F (SubtractionCommMonoid.toSubtractionMonoid.{u4} F (AddCommGroup.toDivisionAddCommMonoid.{u4} F _inst_5))))) (Module.toMulActionWithZero.{u5, u4} πβ F (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5) _inst_6))))) (Seminorm.instOrderBot.{u5, u4} πβ F (SeminormedCommRing.toSeminormedRing.{u5} πβ (NormedCommRing.toSeminormedCommRing.{u5} πβ (NormedField.toNormedCommRing.{u5} πβ _inst_4))) _inst_5 _inst_6) s q) f) (Finset.sup.{u1, u3} (Seminorm.{u2, u1} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))) (AddCommGroup.toAddGroup.{u1} E _inst_2) (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3))))) ΞΉ (Seminorm.instSemilatticeSup.{u2, u1} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))) (AddCommGroup.toAddGroup.{u1} E _inst_2) (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3))))) (Seminorm.instOrderBot.{u2, u1} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))) _inst_2 _inst_3) s (SeminormFamily.comp.{u2, u5, u1, u4, u3} π πβ E F ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 Οββ _inst_7 q f))
+<too large>
Case conversion may be inaccurate. Consider using '#align seminorm_family.finset_sup_comp SeminormFamily.finset_sup_compβ'. -/
theorem SeminormFamily.finset_sup_comp (q : SeminormFamily πβ F ΞΉ) (s : Finset ΞΉ)
(f : E βββ[Οββ] F) : (s.sup q).comp f = s.sup (q.comp f) :=
@@ -1049,10 +941,7 @@ theorem SeminormFamily.finset_sup_comp (q : SeminormFamily πβ F ΞΉ) (s : Fi
variable [TopologicalSpace F] [TopologicalAddGroup F]
/- warning: linear_map.with_seminorms_induced -> LinearMap.withSeminorms_induced is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {πβ : Type.{u2}} {E : Type.{u3}} {F : Type.{u4}} {ΞΉ : Type.{u5}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u3} E] [_inst_3 : Module.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] [_inst_4 : NormedField.{u2} πβ] [_inst_5 : AddCommGroup.{u4} F] [_inst_6 : Module.{u2, u4} πβ F (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)] {Οββ : RingHom.{u1, u2} π πβ (NonAssocRing.toNonAssocSemiring.{u1} π (Ring.toNonAssocRing.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} πβ (Ring.toNonAssocRing.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))))} [_inst_7 : RingHomIsometric.{u1, u2} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) (NormedField.toHasNorm.{u1} π _inst_1) (NormedField.toHasNorm.{u2} πβ _inst_4) Οββ] [_inst_8 : TopologicalSpace.{u4} F] [_inst_9 : TopologicalAddGroup.{u4} F _inst_8 (AddCommGroup.toAddGroup.{u4} F _inst_5)] [hΞΉ : Nonempty.{succ u5} ΞΉ] {q : SeminormFamily.{u2, u4, u5} πβ F ΞΉ _inst_4 _inst_5 _inst_6}, (WithSeminorms.{u2, u4, u5} πβ F ΞΉ _inst_4 _inst_5 _inst_6 hΞΉ q _inst_8) -> (forall (f : LinearMap.{u1, u2, u3, u4} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5) _inst_3 _inst_6), WithSeminorms.{u1, u3, u5} π E ΞΉ _inst_1 _inst_2 _inst_3 hΞΉ (SeminormFamily.comp.{u1, u2, u3, u4, u5} π πβ E F ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 Οββ _inst_7 q f) (TopologicalSpace.induced.{u3, u4} E F (coeFn.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (LinearMap.{u1, u2, u3, u4} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5) _inst_3 _inst_6) (fun (_x : LinearMap.{u1, u2, u3, u4} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5) _inst_3 _inst_6) => E -> F) (LinearMap.hasCoeToFun.{u1, u2, u3, u4} π πβ E F (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5) _inst_3 _inst_6 Οββ) f) (inferInstance.{succ u4} (TopologicalSpace.{u4} F) _inst_8)))
-but is expected to have type
- forall {π : Type.{u2}} {πβ : Type.{u4}} {E : Type.{u1}} {F : Type.{u3}} {ΞΉ : Type.{u5}} [_inst_1 : NormedField.{u2} π] [_inst_2 : AddCommGroup.{u1} E] [_inst_3 : Module.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2)] [_inst_4 : NormedField.{u4} πβ] [_inst_5 : AddCommGroup.{u3} F] [_inst_6 : Module.{u4, u3} πβ F (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F _inst_5)] {Οββ : RingHom.{u2, u4} π πβ (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (Semiring.toNonAssocSemiring.{u4} πβ (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4)))))} [_inst_7 : RingHomIsometric.{u2, u4} π πβ (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4)))) (NormedField.toNorm.{u2} π _inst_1) (NormedField.toNorm.{u4} πβ _inst_4) Οββ] [_inst_8 : TopologicalSpace.{u3} F] [_inst_9 : TopologicalAddGroup.{u3} F _inst_8 (AddCommGroup.toAddGroup.{u3} F _inst_5)] [hΞΉ : Nonempty.{succ u5} ΞΉ] {q : SeminormFamily.{u4, u3, u5} πβ F ΞΉ _inst_4 _inst_5 _inst_6}, (WithSeminorms.{u4, u3, u5} πβ F ΞΉ _inst_4 _inst_5 _inst_6 hΞΉ q _inst_8) -> (forall (f : LinearMap.{u2, u4, u1, u3} π πβ (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_5) _inst_3 _inst_6), WithSeminorms.{u2, u1, u5} π E ΞΉ _inst_1 _inst_2 _inst_3 hΞΉ (SeminormFamily.comp.{u2, u4, u1, u3, u5} π πβ E F ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 Οββ _inst_7 q f) (TopologicalSpace.induced.{u1, u3} E F (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (LinearMap.{u2, u4, u1, u3} π πβ (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_5) _inst_3 _inst_6) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => F) _x) (LinearMap.instFunLikeLinearMap.{u2, u4, u1, u3} π πβ E F (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_5) _inst_3 _inst_6 Οββ) f) (inferInstance.{succ u3} (TopologicalSpace.{u3} F) _inst_8)))
+<too large>
Case conversion may be inaccurate. Consider using '#align linear_map.with_seminorms_induced LinearMap.withSeminorms_inducedβ'. -/
theorem LinearMap.withSeminorms_induced [hΞΉ : Nonempty ΞΉ] {q : SeminormFamily πβ F ΞΉ}
(hq : WithSeminorms q) (f : E βββ[Οββ] F) :
@@ -1067,10 +956,7 @@ theorem LinearMap.withSeminorms_induced [hΞΉ : Nonempty ΞΉ] {q : SeminormFamily
#align linear_map.with_seminorms_induced LinearMap.withSeminorms_induced
/- warning: inducing.with_seminorms -> Inducing.withSeminorms is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {πβ : Type.{u2}} {E : Type.{u3}} {F : Type.{u4}} {ΞΉ : Type.{u5}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u3} E] [_inst_3 : Module.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] [_inst_4 : NormedField.{u2} πβ] [_inst_5 : AddCommGroup.{u4} F] [_inst_6 : Module.{u2, u4} πβ F (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)] {Οββ : RingHom.{u1, u2} π πβ (NonAssocRing.toNonAssocSemiring.{u1} π (Ring.toNonAssocRing.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} πβ (Ring.toNonAssocRing.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))))} [_inst_7 : RingHomIsometric.{u1, u2} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) (NormedField.toHasNorm.{u1} π _inst_1) (NormedField.toHasNorm.{u2} πβ _inst_4) Οββ] [_inst_8 : TopologicalSpace.{u4} F] [_inst_9 : TopologicalAddGroup.{u4} F _inst_8 (AddCommGroup.toAddGroup.{u4} F _inst_5)] [hΞΉ : Nonempty.{succ u5} ΞΉ] {q : SeminormFamily.{u2, u4, u5} πβ F ΞΉ _inst_4 _inst_5 _inst_6}, (WithSeminorms.{u2, u4, u5} πβ F ΞΉ _inst_4 _inst_5 _inst_6 hΞΉ q _inst_8) -> (forall [_inst_10 : TopologicalSpace.{u3} E] {f : LinearMap.{u1, u2, u3, u4} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5) _inst_3 _inst_6}, (Inducing.{u3, u4} E F _inst_10 _inst_8 (coeFn.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (LinearMap.{u1, u2, u3, u4} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5) _inst_3 _inst_6) (fun (_x : LinearMap.{u1, u2, u3, u4} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5) _inst_3 _inst_6) => E -> F) (LinearMap.hasCoeToFun.{u1, u2, u3, u4} π πβ E F (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5) _inst_3 _inst_6 Οββ) f)) -> (WithSeminorms.{u1, u3, u5} π E ΞΉ _inst_1 _inst_2 _inst_3 hΞΉ (SeminormFamily.comp.{u1, u2, u3, u4, u5} π πβ E F ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 Οββ _inst_7 q f) _inst_10))
-but is expected to have type
- forall {π : Type.{u1}} {πβ : Type.{u4}} {E : Type.{u2}} {F : Type.{u3}} {ΞΉ : Type.{u5}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : NormedField.{u4} πβ] [_inst_5 : AddCommGroup.{u3} F] [_inst_6 : Module.{u4, u3} πβ F (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F _inst_5)] {Οββ : RingHom.{u1, u4} π πβ (Semiring.toNonAssocSemiring.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (Semiring.toNonAssocSemiring.{u4} πβ (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4)))))} [_inst_7 : RingHomIsometric.{u1, u4} π πβ (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4)))) (NormedField.toNorm.{u1} π _inst_1) (NormedField.toNorm.{u4} πβ _inst_4) Οββ] [_inst_8 : TopologicalSpace.{u3} F] [_inst_9 : TopologicalAddGroup.{u3} F _inst_8 (AddCommGroup.toAddGroup.{u3} F _inst_5)] [hΞΉ : Nonempty.{succ u5} ΞΉ] {q : SeminormFamily.{u4, u3, u5} πβ F ΞΉ _inst_4 _inst_5 _inst_6}, (WithSeminorms.{u4, u3, u5} πβ F ΞΉ _inst_4 _inst_5 _inst_6 hΞΉ q _inst_8) -> (forall [_inst_10 : TopologicalSpace.{u2} E] {f : LinearMap.{u1, u4, u2, u3} π πβ (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_5) _inst_3 _inst_6}, (Inducing.{u2, u3} E F _inst_10 _inst_8 (FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (LinearMap.{u1, u4, u2, u3} π πβ (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_5) _inst_3 _inst_6) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => F) _x) (LinearMap.instFunLikeLinearMap.{u1, u4, u2, u3} π πβ E F (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_5) _inst_3 _inst_6 Οββ) f)) -> (WithSeminorms.{u1, u2, u5} π E ΞΉ _inst_1 _inst_2 _inst_3 hΞΉ (SeminormFamily.comp.{u1, u4, u2, u3, u5} π πβ E F ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 Οββ _inst_7 q f) _inst_10))
+<too large>
Case conversion may be inaccurate. Consider using '#align inducing.with_seminorms Inducing.withSeminormsβ'. -/
theorem Inducing.withSeminorms [hΞΉ : Nonempty ΞΉ] {q : SeminormFamily πβ F ΞΉ} (hq : WithSeminorms q)
[TopologicalSpace E] {f : E βββ[Οββ] F} (hf : Inducing f) : WithSeminorms (q.comp f) :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/e1a18cad9cd462973d760af7de36b05776b8811c
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Moritz Doll, Anatole Dedecker
! This file was ported from Lean 3 source module analysis.locally_convex.with_seminorms
-! leanprover-community/mathlib commit b31173ee05c911d61ad6a05bd2196835c932e0ec
+! leanprover-community/mathlib commit a87d22575d946e1e156fc1edd1e1269600a8a282
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -16,6 +16,9 @@ import Mathbin.Topology.Algebra.Module.LocallyConvex
/-!
# Topology induced by a family of seminorms
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
## Main definitions
* `seminorm_family.basis_sets`: The set of open seminorm balls for a family of seminorms.
mathlib commit https://github.com/leanprover-community/mathlib/commit/8d33f09cd7089ecf074b4791907588245aec5d1b
@@ -63,42 +63,72 @@ variable [NormedField π] [AddCommGroup E] [Module π E]
variable (π E ΞΉ)
+#print SeminormFamily /-
/-- An abbreviation for indexed families of seminorms. This is mainly to allow for dot-notation. -/
abbrev SeminormFamily :=
ΞΉ β Seminorm π E
#align seminorm_family SeminormFamily
+-/
variable {π E ΞΉ}
namespace SeminormFamily
+#print SeminormFamily.basisSets /-
/-- The sets of a filter basis for the neighborhood filter of 0. -/
def basisSets (p : SeminormFamily π E ΞΉ) : Set (Set E) :=
β (s : Finset ΞΉ) (r) (hr : 0 < r), singleton <| ball (s.sup p) (0 : E) r
#align seminorm_family.basis_sets SeminormFamily.basisSets
+-/
variable (p : SeminormFamily π E ΞΉ)
+/- warning: seminorm_family.basis_sets_iff -> SeminormFamily.basisSets_iff is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] (p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3) {U : Set.{u2} E}, Iff (Membership.Mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.hasMem.{u2} (Set.{u2} E)) U (SeminormFamily.basisSets.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) (Exists.{succ u3} (Finset.{u3} ΞΉ) (fun (i : Finset.{u3} ΞΉ) => Exists.{1} Real (fun (r : Real) => Exists.{0} (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) (fun (hr : LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) => Eq.{succ u2} (Set.{u2} E) U (Seminorm.ball.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) _inst_2 (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (Finset.sup.{u2, u3} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) ΞΉ (Seminorm.semilatticeSup.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (Seminorm.orderBot.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) _inst_2 _inst_3) i p) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2)))))))) r)))))
+but is expected to have type
+ forall {π : Type.{u2}} {E : Type.{u3}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u2} π] [_inst_2 : AddCommGroup.{u3} E] [_inst_3 : Module.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] (p : SeminormFamily.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3) {U : Set.{u3} E}, Iff (Membership.mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.instMembershipSet.{u3} (Set.{u3} E)) U (SeminormFamily.basisSets.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) (Exists.{succ u1} (Finset.{u1} ΞΉ) (fun (i : Finset.{u1} ΞΉ) => Exists.{1} Real (fun (r : Real) => Exists.{0} (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) (fun (hr : LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) => Eq.{succ u3} (Set.{u3} E) U (Seminorm.ball.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))) _inst_2 (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3)))) (Finset.sup.{u3, u1} (Seminorm.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) ΞΉ (Seminorm.instSemilatticeSup.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) (Seminorm.instOrderBot.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))) _inst_2 _inst_3) i p) (OfNat.ofNat.{u3} E 0 (Zero.toOfNat0.{u3} E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))))) r)))))
+Case conversion may be inaccurate. Consider using '#align seminorm_family.basis_sets_iff SeminormFamily.basisSets_iffβ'. -/
theorem basisSets_iff {U : Set E} :
U β p.basis_sets β β (i : Finset ΞΉ)(r : _)(hr : 0 < r), U = ball (i.sup p) 0 r := by
simp only [basis_sets, mem_Union, mem_singleton_iff]
#align seminorm_family.basis_sets_iff SeminormFamily.basisSets_iff
+/- warning: seminorm_family.basis_sets_mem -> SeminormFamily.basisSets_mem is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] (p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3) (i : Finset.{u3} ΞΉ) {r : Real}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) -> (Membership.Mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.hasMem.{u2} (Set.{u2} E)) (Seminorm.ball.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) _inst_2 (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (Finset.sup.{u2, u3} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) ΞΉ (Seminorm.semilatticeSup.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (Seminorm.orderBot.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) _inst_2 _inst_3) i p) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2)))))))) r) (SeminormFamily.basisSets.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p))
+but is expected to have type
+ forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] (p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3) (i : Finset.{u3} ΞΉ) {r : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (Membership.mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.instMembershipSet.{u2} (Set.{u2} E)) (Seminorm.ball.{u1, u2} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) _inst_2 (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (Finset.sup.{u2, u3} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) ΞΉ (Seminorm.instSemilatticeSup.{u1, u2} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (Seminorm.instOrderBot.{u1, u2} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) _inst_2 _inst_3) i p) (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))))) r) (SeminormFamily.basisSets.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p))
+Case conversion may be inaccurate. Consider using '#align seminorm_family.basis_sets_mem SeminormFamily.basisSets_memβ'. -/
theorem basisSets_mem (i : Finset ΞΉ) {r : β} (hr : 0 < r) : (i.sup p).ball 0 r β p.basis_sets :=
(basisSets_iff _).mpr β¨i, _, hr, rflβ©
#align seminorm_family.basis_sets_mem SeminormFamily.basisSets_mem
+/- warning: seminorm_family.basis_sets_singleton_mem -> SeminormFamily.basisSets_singleton_mem is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] (p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3) (i : ΞΉ) {r : Real}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) -> (Membership.Mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.hasMem.{u2} (Set.{u2} E)) (Seminorm.ball.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) _inst_2 (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (p i) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2)))))))) r) (SeminormFamily.basisSets.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p))
+but is expected to have type
+ forall {π : Type.{u2}} {E : Type.{u3}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u2} π] [_inst_2 : AddCommGroup.{u3} E] [_inst_3 : Module.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] (p : SeminormFamily.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3) (i : ΞΉ) {r : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (Membership.mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.instMembershipSet.{u3} (Set.{u3} E)) (Seminorm.ball.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))) _inst_2 (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3)))) (p i) (OfNat.ofNat.{u3} E 0 (Zero.toOfNat0.{u3} E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))))) r) (SeminormFamily.basisSets.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 p))
+Case conversion may be inaccurate. Consider using '#align seminorm_family.basis_sets_singleton_mem SeminormFamily.basisSets_singleton_memβ'. -/
theorem basisSets_singleton_mem (i : ΞΉ) {r : β} (hr : 0 < r) : (p i).ball 0 r β p.basis_sets :=
(basisSets_iff _).mpr β¨{i}, _, hr, by rw [Finset.sup_singleton]β©
#align seminorm_family.basis_sets_singleton_mem SeminormFamily.basisSets_singleton_mem
+#print SeminormFamily.basisSets_nonempty /-
theorem basisSets_nonempty [Nonempty ΞΉ] : p.basis_sets.Nonempty :=
by
let i := Classical.arbitrary ΞΉ
refine' set.nonempty_def.mpr β¨(p i).ball 0 1, _β©
exact p.basis_sets_singleton_mem i zero_lt_one
#align seminorm_family.basis_sets_nonempty SeminormFamily.basisSets_nonempty
+-/
+/- warning: seminorm_family.basis_sets_intersect -> SeminormFamily.basisSets_intersect is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] (p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3) (U : Set.{u2} E) (V : Set.{u2} E), (Membership.Mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.hasMem.{u2} (Set.{u2} E)) U (SeminormFamily.basisSets.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) -> (Membership.Mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.hasMem.{u2} (Set.{u2} E)) V (SeminormFamily.basisSets.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) -> (Exists.{succ u2} (Set.{u2} E) (fun (z : Set.{u2} E) => Exists.{0} (Membership.Mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.hasMem.{u2} (Set.{u2} E)) z (SeminormFamily.basisSets.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) (fun (H : Membership.Mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.hasMem.{u2} (Set.{u2} E)) z (SeminormFamily.basisSets.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) => HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) z (Inter.inter.{u2} (Set.{u2} E) (Set.hasInter.{u2} E) U V))))
+but is expected to have type
+ forall {π : Type.{u2}} {E : Type.{u3}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u2} π] [_inst_2 : AddCommGroup.{u3} E] [_inst_3 : Module.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] (p : SeminormFamily.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3) (U : Set.{u3} E) (V : Set.{u3} E), (Membership.mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.instMembershipSet.{u3} (Set.{u3} E)) U (SeminormFamily.basisSets.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) -> (Membership.mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.instMembershipSet.{u3} (Set.{u3} E)) V (SeminormFamily.basisSets.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) -> (Exists.{succ u3} (Set.{u3} E) (fun (z : Set.{u3} E) => And (Membership.mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.instMembershipSet.{u3} (Set.{u3} E)) z (SeminormFamily.basisSets.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) (HasSubset.Subset.{u3} (Set.{u3} E) (Set.instHasSubsetSet.{u3} E) z (Inter.inter.{u3} (Set.{u3} E) (Set.instInterSet.{u3} E) U V))))
+Case conversion may be inaccurate. Consider using '#align seminorm_family.basis_sets_intersect SeminormFamily.basisSets_intersectβ'. -/
theorem basisSets_intersect (U V : Set E) (hU : U β p.basis_sets) (hV : V β p.basis_sets) :
β (z : Set E)(H : z β p.basis_sets), z β U β© V := by
classical
@@ -116,6 +146,12 @@ theorem basisSets_intersect (U V : Set E) (hU : U β p.basis_sets) (hV : V β
β¨i, Finset.subset_union_right _ _ hi, ball_mono <| min_le_right _ _β©)
#align seminorm_family.basis_sets_intersect SeminormFamily.basisSets_intersect
+/- warning: seminorm_family.basis_sets_zero -> SeminormFamily.basisSets_zero is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] (p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3) (U : Set.{u2} E), (Membership.Mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.hasMem.{u2} (Set.{u2} E)) U (SeminormFamily.basisSets.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) -> (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2)))))))) U)
+but is expected to have type
+ forall {π : Type.{u2}} {E : Type.{u3}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u2} π] [_inst_2 : AddCommGroup.{u3} E] [_inst_3 : Module.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] (p : SeminormFamily.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3) (U : Set.{u3} E), (Membership.mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.instMembershipSet.{u3} (Set.{u3} E)) U (SeminormFamily.basisSets.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) -> (Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) (OfNat.ofNat.{u3} E 0 (Zero.toOfNat0.{u3} E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))))) U)
+Case conversion may be inaccurate. Consider using '#align seminorm_family.basis_sets_zero SeminormFamily.basisSets_zeroβ'. -/
theorem basisSets_zero (U) (hU : U β p.basis_sets) : (0 : E) β U :=
by
rcases p.basis_sets_iff.mp hU with β¨ΞΉ', r, hr, hUβ©
@@ -123,6 +159,12 @@ theorem basisSets_zero (U) (hU : U β p.basis_sets) : (0 : E) β U :=
exact hr
#align seminorm_family.basis_sets_zero SeminormFamily.basisSets_zero
+/- warning: seminorm_family.basis_sets_add -> SeminormFamily.basisSets_add is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] (p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3) (U : Set.{u2} E), (Membership.Mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.hasMem.{u2} (Set.{u2} E)) U (SeminormFamily.basisSets.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) -> (Exists.{succ u2} (Set.{u2} E) (fun (V : Set.{u2} E) => Exists.{0} (Membership.Mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.hasMem.{u2} (Set.{u2} E)) V (SeminormFamily.basisSets.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) (fun (H : Membership.Mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.hasMem.{u2} (Set.{u2} E)) V (SeminormFamily.basisSets.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) => HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) (HAdd.hAdd.{u2, u2, u2} (Set.{u2} E) (Set.{u2} E) (Set.{u2} E) (instHAdd.{u2} (Set.{u2} E) (Set.add.{u2} E (AddZeroClass.toHasAdd.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))))) V V) U)))
+but is expected to have type
+ forall {π : Type.{u2}} {E : Type.{u3}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u2} π] [_inst_2 : AddCommGroup.{u3} E] [_inst_3 : Module.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] (p : SeminormFamily.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3) (U : Set.{u3} E), (Membership.mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.instMembershipSet.{u3} (Set.{u3} E)) U (SeminormFamily.basisSets.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) -> (Exists.{succ u3} (Set.{u3} E) (fun (V : Set.{u3} E) => And (Membership.mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.instMembershipSet.{u3} (Set.{u3} E)) V (SeminormFamily.basisSets.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) (HasSubset.Subset.{u3} (Set.{u3} E) (Set.instHasSubsetSet.{u3} E) (HAdd.hAdd.{u3, u3, u3} (Set.{u3} E) (Set.{u3} E) (Set.{u3} E) (instHAdd.{u3} (Set.{u3} E) (Set.add.{u3} E (AddZeroClass.toAdd.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_2))))))) V V) U)))
+Case conversion may be inaccurate. Consider using '#align seminorm_family.basis_sets_add SeminormFamily.basisSets_addβ'. -/
theorem basisSets_add (U) (hU : U β p.basis_sets) :
β (V : Set E)(H : V β p.basis_sets), V + V β U :=
by
@@ -133,6 +175,12 @@ theorem basisSets_add (U) (hU : U β p.basis_sets) :
rw [hU, add_zero, add_halves']
#align seminorm_family.basis_sets_add SeminormFamily.basisSets_add
+/- warning: seminorm_family.basis_sets_neg -> SeminormFamily.basisSets_neg is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] (p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3) (U : Set.{u2} E), (Membership.Mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.hasMem.{u2} (Set.{u2} E)) U (SeminormFamily.basisSets.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) -> (Exists.{succ u2} (Set.{u2} E) (fun (V : Set.{u2} E) => Exists.{0} (Membership.Mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.hasMem.{u2} (Set.{u2} E)) V (SeminormFamily.basisSets.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) (fun (H : Membership.Mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.hasMem.{u2} (Set.{u2} E)) V (SeminormFamily.basisSets.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) => HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) V (Set.preimage.{u2, u2} E E (fun (x : E) => Neg.neg.{u2} E (SubNegMonoid.toHasNeg.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))) x) U))))
+but is expected to have type
+ forall {π : Type.{u2}} {E : Type.{u3}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u2} π] [_inst_2 : AddCommGroup.{u3} E] [_inst_3 : Module.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] (p : SeminormFamily.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3) (U : Set.{u3} E), (Membership.mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.instMembershipSet.{u3} (Set.{u3} E)) U (SeminormFamily.basisSets.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) -> (Exists.{succ u3} (Set.{u3} E) (fun (V : Set.{u3} E) => And (Membership.mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.instMembershipSet.{u3} (Set.{u3} E)) V (SeminormFamily.basisSets.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) (HasSubset.Subset.{u3} (Set.{u3} E) (Set.instHasSubsetSet.{u3} E) V (Set.preimage.{u3, u3} E E (fun (x : E) => Neg.neg.{u3} E (NegZeroClass.toNeg.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) x) U))))
+Case conversion may be inaccurate. Consider using '#align seminorm_family.basis_sets_neg SeminormFamily.basisSets_negβ'. -/
theorem basisSets_neg (U) (hU' : U β p.basis_sets) :
β (V : Set E)(H : V β p.basis_sets), V β (fun x : E => -x) β»ΒΉ' U :=
by
@@ -141,12 +189,20 @@ theorem basisSets_neg (U) (hU' : U β p.basis_sets) :
exact β¨U, hU', Eq.subset hUβ©
#align seminorm_family.basis_sets_neg SeminormFamily.basisSets_neg
+#print SeminormFamily.addGroupFilterBasis /-
/-- The `add_group_filter_basis` induced by the filter basis `seminorm_basis_zero`. -/
protected def addGroupFilterBasis [Nonempty ΞΉ] : AddGroupFilterBasis E :=
addGroupFilterBasisOfComm p.basis_sets p.basisSets_nonempty p.basisSets_intersect p.basisSets_zero
p.basisSets_add p.basisSets_neg
#align seminorm_family.add_group_filter_basis SeminormFamily.addGroupFilterBasis
+-/
+/- warning: seminorm_family.basis_sets_smul_right -> SeminormFamily.basisSets_smul_right is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] (p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3) (v : E) (U : Set.{u2} E), (Membership.Mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.hasMem.{u2} (Set.{u2} E)) U (SeminormFamily.basisSets.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) -> (Filter.Eventually.{u1} π (fun (x : π) => Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) (SMul.smul.{u1, u2} π E (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) x v) U) (nhds.{u1} π (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (OfNat.ofNat.{u1} π 0 (OfNat.mk.{u1} π 0 (Zero.zero.{u1} π (MulZeroClass.toHasZero.{u1} π (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π (NonAssocRing.toNonUnitalNonAssocRing.{u1} π (Ring.toNonAssocRing.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))))))))
+but is expected to have type
+ forall {π : Type.{u2}} {E : Type.{u3}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u2} π] [_inst_2 : AddCommGroup.{u3} E] [_inst_3 : Module.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] (p : SeminormFamily.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3) (v : E) (U : Set.{u3} E), (Membership.mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.instMembershipSet.{u3} (Set.{u3} E)) U (SeminormFamily.basisSets.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) -> (Filter.Eventually.{u2} π (fun (x : π) => Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) (HSMul.hSMul.{u2, u3, u3} π E E (instHSMul.{u2, u3} π E (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) x v) U) (nhds.{u2} π (UniformSpace.toTopologicalSpace.{u2} π (PseudoMetricSpace.toUniformSpace.{u2} π (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1)))))) (OfNat.ofNat.{u2} π 0 (Zero.toOfNat0.{u2} π (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))))))))
+Case conversion may be inaccurate. Consider using '#align seminorm_family.basis_sets_smul_right SeminormFamily.basisSets_smul_rightβ'. -/
theorem basisSets_smul_right (v : E) (U : Set E) (hU : U β p.basis_sets) :
βαΆ x : π in π 0, x β’ v β U :=
by
@@ -163,6 +219,12 @@ theorem basisSets_smul_right (v : E) (U : Set E) (hU : U β p.basis_sets) :
variable [Nonempty ΞΉ]
+/- warning: seminorm_family.basis_sets_smul -> SeminormFamily.basisSets_smul is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] (p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3) [_inst_4 : Nonempty.{succ u3} ΞΉ] (U : Set.{u2} E), (Membership.Mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.hasMem.{u2} (Set.{u2} E)) U (SeminormFamily.basisSets.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) -> (Exists.{succ u1} (Set.{u1} π) (fun (V : Set.{u1} π) => Exists.{0} (Membership.Mem.{u1, u1} (Set.{u1} π) (Filter.{u1} π) (Filter.hasMem.{u1} π) V (nhds.{u1} π (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (OfNat.ofNat.{u1} π 0 (OfNat.mk.{u1} π 0 (Zero.zero.{u1} π (MulZeroClass.toHasZero.{u1} π (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π (NonAssocRing.toNonUnitalNonAssocRing.{u1} π (Ring.toNonAssocRing.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))))))) (fun (H : Membership.Mem.{u1, u1} (Set.{u1} π) (Filter.{u1} π) (Filter.hasMem.{u1} π) V (nhds.{u1} π (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (OfNat.ofNat.{u1} π 0 (OfNat.mk.{u1} π 0 (Zero.zero.{u1} π (MulZeroClass.toHasZero.{u1} π (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π (NonAssocRing.toNonUnitalNonAssocRing.{u1} π (Ring.toNonAssocRing.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))))))) => Exists.{succ u2} (Set.{u2} E) (fun (W : Set.{u2} E) => Exists.{0} (Membership.Mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.hasMem.{u2} (Set.{u2} E)) W (FilterBasis.sets.{u2} E (AddGroupFilterBasis.toFilterBasis.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2) (SeminormFamily.addGroupFilterBasis.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p _inst_4)))) (fun (H : Membership.Mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.hasMem.{u2} (Set.{u2} E)) W (FilterBasis.sets.{u2} E (AddGroupFilterBasis.toFilterBasis.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2) (SeminormFamily.addGroupFilterBasis.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p _inst_4)))) => HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) (SMul.smul.{u1, u2} (Set.{u1} π) (Set.{u2} E) (Set.smul.{u1, u2} π E (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) V W) U)))))
+but is expected to have type
+ forall {π : Type.{u2}} {E : Type.{u3}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u2} π] [_inst_2 : AddCommGroup.{u3} E] [_inst_3 : Module.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] (p : SeminormFamily.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3) [_inst_4 : Nonempty.{succ u1} ΞΉ] (U : Set.{u3} E), (Membership.mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.instMembershipSet.{u3} (Set.{u3} E)) U (SeminormFamily.basisSets.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) -> (Exists.{succ u2} (Set.{u2} π) (fun (V : Set.{u2} π) => And (Membership.mem.{u2, u2} (Set.{u2} π) (Filter.{u2} π) (instMembershipSetFilter.{u2} π) V (nhds.{u2} π (UniformSpace.toTopologicalSpace.{u2} π (PseudoMetricSpace.toUniformSpace.{u2} π (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1)))))) (OfNat.ofNat.{u2} π 0 (Zero.toOfNat0.{u2} π (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))))))) (Exists.{succ u3} (Set.{u3} E) (fun (W : Set.{u3} E) => And (Membership.mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.instMembershipSet.{u3} (Set.{u3} E)) W (FilterBasis.sets.{u3} E (AddGroupFilterBasis.toFilterBasis.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_2) (SeminormFamily.addGroupFilterBasis.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 p _inst_4)))) (HasSubset.Subset.{u3} (Set.{u3} E) (Set.instHasSubsetSet.{u3} E) (HSMul.hSMul.{u2, u3, u3} (Set.{u2} π) (Set.{u3} E) (Set.{u3} E) (instHSMul.{u2, u3} (Set.{u2} π) (Set.{u3} E) (Set.smul.{u2, u3} π E (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3)))))) V W) U)))))
+Case conversion may be inaccurate. Consider using '#align seminorm_family.basis_sets_smul SeminormFamily.basisSets_smulβ'. -/
theorem basisSets_smul (U) (hU : U β p.basis_sets) :
β (V : Set π)(H : V β π (0 : π))(W : Set E)(H : W β p.AddGroupFilterBasis.sets), V β’ W β U :=
by
@@ -173,6 +235,12 @@ theorem basisSets_smul (U) (hU : U β p.basis_sets) :
rw [hU, Real.mul_self_sqrt (le_of_lt hr)]
#align seminorm_family.basis_sets_smul SeminormFamily.basisSets_smul
+/- warning: seminorm_family.basis_sets_smul_left -> SeminormFamily.basisSets_smul_left is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] (p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3) [_inst_4 : Nonempty.{succ u3} ΞΉ] (x : π) (U : Set.{u2} E), (Membership.Mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.hasMem.{u2} (Set.{u2} E)) U (SeminormFamily.basisSets.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) -> (Exists.{succ u2} (Set.{u2} E) (fun (V : Set.{u2} E) => Exists.{0} (Membership.Mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.hasMem.{u2} (Set.{u2} E)) V (FilterBasis.sets.{u2} E (AddGroupFilterBasis.toFilterBasis.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2) (SeminormFamily.addGroupFilterBasis.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p _inst_4)))) (fun (H : Membership.Mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.hasMem.{u2} (Set.{u2} E)) V (FilterBasis.sets.{u2} E (AddGroupFilterBasis.toFilterBasis.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2) (SeminormFamily.addGroupFilterBasis.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p _inst_4)))) => HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) V (Set.preimage.{u2, u2} E E (fun (y : E) => SMul.smul.{u1, u2} π E (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) x y) U))))
+but is expected to have type
+ forall {π : Type.{u2}} {E : Type.{u3}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u2} π] [_inst_2 : AddCommGroup.{u3} E] [_inst_3 : Module.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] (p : SeminormFamily.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3) [_inst_4 : Nonempty.{succ u1} ΞΉ] (x : π) (U : Set.{u3} E), (Membership.mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.instMembershipSet.{u3} (Set.{u3} E)) U (SeminormFamily.basisSets.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) -> (Exists.{succ u3} (Set.{u3} E) (fun (V : Set.{u3} E) => And (Membership.mem.{u3, u3} (Set.{u3} E) (Set.{u3} (Set.{u3} E)) (Set.instMembershipSet.{u3} (Set.{u3} E)) V (FilterBasis.sets.{u3} E (AddGroupFilterBasis.toFilterBasis.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_2) (SeminormFamily.addGroupFilterBasis.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 p _inst_4)))) (HasSubset.Subset.{u3} (Set.{u3} E) (Set.instHasSubsetSet.{u3} E) V (Set.preimage.{u3, u3} E E (fun (y : E) => HSMul.hSMul.{u2, u3, u3} π E E (instHSMul.{u2, u3} π E (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) x y) U))))
+Case conversion may be inaccurate. Consider using '#align seminorm_family.basis_sets_smul_left SeminormFamily.basisSets_smul_leftβ'. -/
theorem basisSets_smul_left (x : π) (U : Set E) (hU : U β p.basis_sets) :
β (V : Set E)(H : V β p.AddGroupFilterBasis.sets), V β (fun y : E => x β’ y) β»ΒΉ' U :=
by
@@ -187,6 +255,7 @@ theorem basisSets_smul_left (x : π) (U : Set E) (hU : U β p.basis_sets) :
preimage_const_of_mem, zero_smul]
#align seminorm_family.basis_sets_smul_left SeminormFamily.basisSets_smul_left
+#print SeminormFamily.moduleFilterBasis /-
/-- The `module_filter_basis` induced by the filter basis `seminorm_basis_zero`. -/
protected def moduleFilterBasis : ModuleFilterBasis π E
where
@@ -195,7 +264,14 @@ protected def moduleFilterBasis : ModuleFilterBasis π E
smul_left' := p.basisSets_smul_left
smul_right' := p.basisSets_smul_right
#align seminorm_family.module_filter_basis SeminormFamily.moduleFilterBasis
+-/
+/- warning: seminorm_family.filter_eq_infi -> SeminormFamily.filter_eq_iInf is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u3} ΞΉ] (p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3), Eq.{succ u2} (Filter.{u2} E) (FilterBasis.filter.{u2} E (AddGroupFilterBasis.toFilterBasis.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2) (ModuleFilterBasis.toAddGroupFilterBasis.{u1, u2} π E (SeminormedCommRing.toCommRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) _inst_2 _inst_3 (SeminormFamily.moduleFilterBasis.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p _inst_4)))) (iInf.{u2, succ u3} (Filter.{u2} E) (ConditionallyCompleteLattice.toHasInf.{u2} (Filter.{u2} E) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} E) (Filter.completeLattice.{u2} E))) ΞΉ (fun (i : ΞΉ) => Filter.comap.{u2, 0} E Real (coeFn.{succ u2, succ u2} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (fun (_x : Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) => E -> Real) (Seminorm.hasCoeToFun.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (p i)) (nhds.{0} Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))))))
+but is expected to have type
+ forall {π : Type.{u3}} {E : Type.{u2}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u3} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u1} ΞΉ] (p : SeminormFamily.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3), Eq.{succ u2} (Filter.{u2} E) (FilterBasis.filter.{u2} E (AddGroupFilterBasis.toFilterBasis.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2) (ModuleFilterBasis.toAddGroupFilterBasis.{u3, u2} π E (EuclideanDomain.toCommRing.{u3} π (Field.toEuclideanDomain.{u3} π (NormedField.toField.{u3} π _inst_1))) (UniformSpace.toTopologicalSpace.{u3} π (PseudoMetricSpace.toUniformSpace.{u3} π (SeminormedRing.toPseudoMetricSpace.{u3} π (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1)))))) _inst_2 _inst_3 (SeminormFamily.moduleFilterBasis.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 p _inst_4)))) (iInf.{u2, succ u1} (Filter.{u2} E) (ConditionallyCompleteLattice.toInfSet.{u2} (Filter.{u2} E) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} E) (Filter.instCompleteLatticeFilter.{u2} E))) ΞΉ (fun (i : ΞΉ) => Filter.comap.{u2, 0} E Real (FunLike.coe.{succ u2, succ u2, 1} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) E (fun (_x : E) => (fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) _x) (SubadditiveHomClass.toFunLike.{u2, u2, 0} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) E Real (AddZeroClass.toAdd.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real (AddCommMonoid.toAddMonoid.{0} Real (OrderedAddCommMonoid.toAddCommMonoid.{0} Real Real.orderedAddCommMonoid)))) (Preorder.toLE.{0} Real (PartialOrder.toPreorder.{0} Real (OrderedAddCommMonoid.toPartialOrder.{0} Real Real.orderedAddCommMonoid))) (AddGroupSeminormClass.toAddLEAddHomClass.{u2, u2, 0} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) E Real (AddCommGroup.toAddGroup.{u2} E _inst_2) Real.orderedAddCommMonoid (SeminormClass.toAddGroupSeminormClass.{u2, u3, u2} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (Seminorm.instSeminormClass.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))))))) (p i)) (nhds.{0} Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)))))
+Case conversion may be inaccurate. Consider using '#align seminorm_family.filter_eq_infi SeminormFamily.filter_eq_iInfβ'. -/
theorem filter_eq_iInf (p : SeminormFamily π E ΞΉ) :
p.ModuleFilterBasis.toFilterBasis.filterβ = β¨
i, (π 0).comap (p i) :=
by
@@ -231,18 +307,32 @@ variable [NormedField πβ] [AddCommGroup F] [Module πβ F]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
+#print Seminorm.IsBounded /-
-- Todo: This should be phrased entirely in terms of the von Neumann bornology.
/-- The proposition that a linear map is bounded between spaces with families of seminorms. -/
def IsBounded (p : ΞΉ β Seminorm π E) (q : ΞΉ' β Seminorm πβ F) (f : E βββ[Οββ] F) : Prop :=
β i, β s : Finset ΞΉ, β C : ββ₯0, (q i).comp f β€ C β’ s.sup p
#align seminorm.is_bounded Seminorm.IsBounded
+-/
+/- warning: seminorm.is_bounded_const -> Seminorm.isBounded_const is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {πβ : Type.{u2}} {E : Type.{u3}} {F : Type.{u4}} {ΞΉ : Type.{u5}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u3} E] [_inst_3 : Module.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] [_inst_4 : NormedField.{u2} πβ] [_inst_5 : AddCommGroup.{u4} F] [_inst_6 : Module.{u2, u4} πβ F (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)] {Οββ : RingHom.{u1, u2} π πβ (NonAssocRing.toNonAssocSemiring.{u1} π (Ring.toNonAssocRing.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} πβ (Ring.toNonAssocRing.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))))} [_inst_7 : RingHomIsometric.{u1, u2} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) (NormedField.toHasNorm.{u1} π _inst_1) (NormedField.toHasNorm.{u2} πβ _inst_4) Οββ] (ΞΉ' : Type.{u6}) [_inst_8 : Nonempty.{succ u6} ΞΉ'] {p : ΞΉ -> (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3)))))} {q : Seminorm.{u2, u4} πβ F (SeminormedCommRing.toSemiNormedRing.{u2} πβ (NormedCommRing.toSeminormedCommRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4))) (AddCommGroup.toAddGroup.{u4} F _inst_5) (SMulZeroClass.toHasSmul.{u2, u4} πβ F (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)))) (SMulWithZero.toSmulZeroClass.{u2, u4} πβ F (MulZeroClass.toHasZero.{u2} πβ (MulZeroOneClass.toMulZeroClass.{u2} πβ (MonoidWithZero.toMulZeroOneClass.{u2} πβ (Semiring.toMonoidWithZero.{u2} πβ (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)))) (MulActionWithZero.toSMulWithZero.{u2, u4} πβ F (Semiring.toMonoidWithZero.{u2} πβ (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)))) (Module.toMulActionWithZero.{u2, u4} πβ F (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5) _inst_6))))} (f : LinearMap.{u1, u2, u3, u4} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5) _inst_3 _inst_6), Iff (Seminorm.IsBounded.{u1, u2, u3, u4, u5, u6} π πβ E F ΞΉ ΞΉ' _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 Οββ _inst_7 p (fun (_x : ΞΉ') => q) f) (Exists.{succ u5} (Finset.{u5} ΞΉ) (fun (s : Finset.{u5} ΞΉ) => Exists.{1} NNReal (fun (C : NNReal) => LE.le.{u3} (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) (Preorder.toHasLe.{u3} (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) (PartialOrder.toPreorder.{u3} (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) (Seminorm.partialOrder.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))))) (Seminorm.comp.{u1, u2, u3, u4} π πβ E F (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (SeminormedCommRing.toSemiNormedRing.{u2} πβ (NormedCommRing.toSeminormedCommRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4))) Οββ _inst_7 _inst_2 _inst_5 _inst_3 _inst_6 q f) (SMul.smul.{0, u3} NNReal (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) (Seminorm.hasSmul.{0, u1, u3} NNReal π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3)))) (MulAction.toHasSmul.{0, 0} NNReal Real (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal NNReal.semiring)) (NNReal.mulAction.{0} Real (Monoid.toMulAction.{0} Real Real.monoid))) (Mul.toSMul.{0} NNReal (MulOneClass.toHasMul.{0} NNReal (Monoid.toMulOneClass.{0} NNReal (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal NNReal.semiring))))) (IsScalarTower.left.{0, 0} NNReal Real (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal NNReal.semiring)) (NNReal.mulAction.{0} Real (Monoid.toMulAction.{0} Real Real.monoid)))) C (Finset.sup.{u3, u5} (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) ΞΉ (Seminorm.semilatticeSup.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) (Seminorm.orderBot.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) _inst_2 _inst_3) s p)))))
+but is expected to have type
+ forall {π : Type.{u5}} {πβ : Type.{u3}} {E : Type.{u4}} {F : Type.{u2}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u5} π] [_inst_2 : AddCommGroup.{u4} E] [_inst_3 : Module.{u5, u4} π E (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} E _inst_2)] [_inst_4 : NormedField.{u3} πβ] [_inst_5 : AddCommGroup.{u2} F] [_inst_6 : Module.{u3, u2} πβ F (DivisionSemiring.toSemiring.{u3} πβ (Semifield.toDivisionSemiring.{u3} πβ (Field.toSemifield.{u3} πβ (NormedField.toField.{u3} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F _inst_5)] {Οββ : RingHom.{u5, u3} π πβ (Semiring.toNonAssocSemiring.{u5} π (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (Semiring.toNonAssocSemiring.{u3} πβ (DivisionSemiring.toSemiring.{u3} πβ (Semifield.toDivisionSemiring.{u3} πβ (Field.toSemifield.{u3} πβ (NormedField.toField.{u3} πβ _inst_4)))))} [_inst_7 : RingHomIsometric.{u5, u3} π πβ (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1)))) (DivisionSemiring.toSemiring.{u3} πβ (Semifield.toDivisionSemiring.{u3} πβ (Field.toSemifield.{u3} πβ (NormedField.toField.{u3} πβ _inst_4)))) (NormedField.toNorm.{u5} π _inst_1) (NormedField.toNorm.{u3} πβ _inst_4) Οββ] (ΞΉ' : Type.{u6}) [_inst_8 : Nonempty.{succ u6} ΞΉ'] {p : ΞΉ -> (Seminorm.{u5, u4} π E (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))) (AddCommGroup.toAddGroup.{u4} E _inst_2) (SMulZeroClass.toSMul.{u5, u4} π E (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u5, u4} π E (CommMonoidWithZero.toZero.{u5} π (CommGroupWithZero.toCommMonoidWithZero.{u5} π (Semifield.toCommGroupWithZero.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u5, u4} π E (Semiring.toMonoidWithZero.{u5} π (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (Module.toMulActionWithZero.{u5, u4} π E (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} E _inst_2) _inst_3)))))} {q : Seminorm.{u3, u2} πβ F (SeminormedCommRing.toSeminormedRing.{u3} πβ (NormedCommRing.toSeminormedCommRing.{u3} πβ (NormedField.toNormedCommRing.{u3} πβ _inst_4))) (AddCommGroup.toAddGroup.{u2} F _inst_5) (SMulZeroClass.toSMul.{u3, u2} πβ F (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F _inst_5))))) (SMulWithZero.toSMulZeroClass.{u3, u2} πβ F (CommMonoidWithZero.toZero.{u3} πβ (CommGroupWithZero.toCommMonoidWithZero.{u3} πβ (Semifield.toCommGroupWithZero.{u3} πβ (Field.toSemifield.{u3} πβ (NormedField.toField.{u3} πβ _inst_4))))) (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F _inst_5))))) (MulActionWithZero.toSMulWithZero.{u3, u2} πβ F (Semiring.toMonoidWithZero.{u3} πβ (DivisionSemiring.toSemiring.{u3} πβ (Semifield.toDivisionSemiring.{u3} πβ (Field.toSemifield.{u3} πβ (NormedField.toField.{u3} πβ _inst_4))))) (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F _inst_5))))) (Module.toMulActionWithZero.{u3, u2} πβ F (DivisionSemiring.toSemiring.{u3} πβ (Semifield.toDivisionSemiring.{u3} πβ (Field.toSemifield.{u3} πβ (NormedField.toField.{u3} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F _inst_5) _inst_6))))} (f : LinearMap.{u5, u3, u4, u2} π πβ (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1)))) (DivisionSemiring.toSemiring.{u3} πβ (Semifield.toDivisionSemiring.{u3} πβ (Field.toSemifield.{u3} πβ (NormedField.toField.{u3} πβ _inst_4)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u4} E _inst_2) (AddCommGroup.toAddCommMonoid.{u2} F _inst_5) _inst_3 _inst_6), Iff (Seminorm.IsBounded.{u5, u3, u4, u2, u1, u6} π πβ E F ΞΉ ΞΉ' _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 Οββ _inst_7 p (fun (_x : ΞΉ') => q) f) (Exists.{succ u1} (Finset.{u1} ΞΉ) (fun (s : Finset.{u1} ΞΉ) => Exists.{1} NNReal (fun (C : NNReal) => LE.le.{u4} (Seminorm.{u5, u4} π E (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))) (AddCommGroup.toAddGroup.{u4} E _inst_2) (SMulZeroClass.toSMul.{u5, u4} π E (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u5, u4} π E (MonoidWithZero.toZero.{u5} π (Semiring.toMonoidWithZero.{u5} π (Ring.toSemiring.{u5} π (SeminormedRing.toRing.{u5} π (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u5, u4} π E (Semiring.toMonoidWithZero.{u5} π (Ring.toSemiring.{u5} π (SeminormedRing.toRing.{u5} π (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1)))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (Module.toMulActionWithZero.{u5, u4} π E (Ring.toSemiring.{u5} π (SeminormedRing.toRing.{u5} π (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u4} E _inst_2) _inst_3))))) (Preorder.toLE.{u4} (Seminorm.{u5, u4} π E (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))) (AddCommGroup.toAddGroup.{u4} E _inst_2) (SMulZeroClass.toSMul.{u5, u4} π E (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u5, u4} π E (MonoidWithZero.toZero.{u5} π (Semiring.toMonoidWithZero.{u5} π (Ring.toSemiring.{u5} π (SeminormedRing.toRing.{u5} π (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u5, u4} π E (Semiring.toMonoidWithZero.{u5} π (Ring.toSemiring.{u5} π (SeminormedRing.toRing.{u5} π (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1)))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (Module.toMulActionWithZero.{u5, u4} π E (Ring.toSemiring.{u5} π (SeminormedRing.toRing.{u5} π (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u4} E _inst_2) _inst_3))))) (PartialOrder.toPreorder.{u4} (Seminorm.{u5, u4} π E (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))) (AddCommGroup.toAddGroup.{u4} E _inst_2) (SMulZeroClass.toSMul.{u5, u4} π E (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u5, u4} π E (MonoidWithZero.toZero.{u5} π (Semiring.toMonoidWithZero.{u5} π (Ring.toSemiring.{u5} π (SeminormedRing.toRing.{u5} π (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u5, u4} π E (Semiring.toMonoidWithZero.{u5} π (Ring.toSemiring.{u5} π (SeminormedRing.toRing.{u5} π (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1)))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (Module.toMulActionWithZero.{u5, u4} π E (Ring.toSemiring.{u5} π (SeminormedRing.toRing.{u5} π (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u4} E _inst_2) _inst_3))))) (Seminorm.instPartialOrder.{u5, u4} π E (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))) (AddCommGroup.toAddGroup.{u4} E _inst_2) (SMulZeroClass.toSMul.{u5, u4} π E (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u5, u4} π E (MonoidWithZero.toZero.{u5} π (Semiring.toMonoidWithZero.{u5} π (Ring.toSemiring.{u5} π (SeminormedRing.toRing.{u5} π (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u5, u4} π E (Semiring.toMonoidWithZero.{u5} π (Ring.toSemiring.{u5} π (SeminormedRing.toRing.{u5} π (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1)))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (Module.toMulActionWithZero.{u5, u4} π E (Ring.toSemiring.{u5} π (SeminormedRing.toRing.{u5} π (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u4} E _inst_2) _inst_3))))))) (Seminorm.comp.{u5, u3, u4, u2} π πβ E F (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))) (SeminormedCommRing.toSeminormedRing.{u3} πβ (NormedCommRing.toSeminormedCommRing.{u3} πβ (NormedField.toNormedCommRing.{u3} πβ _inst_4))) Οββ _inst_7 _inst_2 _inst_5 _inst_3 _inst_6 q f) (HSMul.hSMul.{0, u4, u4} NNReal (Seminorm.{u5, u4} π E (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))) (AddCommGroup.toAddGroup.{u4} E _inst_2) (SMulZeroClass.toSMul.{u5, u4} π E (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u5, u4} π E (CommMonoidWithZero.toZero.{u5} π (CommGroupWithZero.toCommMonoidWithZero.{u5} π (Semifield.toCommGroupWithZero.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u5, u4} π E (Semiring.toMonoidWithZero.{u5} π (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (Module.toMulActionWithZero.{u5, u4} π E (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} E _inst_2) _inst_3))))) (Seminorm.{u5, u4} π E (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))) (AddCommGroup.toAddGroup.{u4} E _inst_2) (SMulZeroClass.toSMul.{u5, u4} π E (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u5, u4} π E (CommMonoidWithZero.toZero.{u5} π (CommGroupWithZero.toCommMonoidWithZero.{u5} π (Semifield.toCommGroupWithZero.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u5, u4} π E (Semiring.toMonoidWithZero.{u5} π (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (Module.toMulActionWithZero.{u5, u4} π E (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} E _inst_2) _inst_3))))) (instHSMul.{0, u4} NNReal (Seminorm.{u5, u4} π E (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))) (AddCommGroup.toAddGroup.{u4} E _inst_2) (SMulZeroClass.toSMul.{u5, u4} π E (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u5, u4} π E (CommMonoidWithZero.toZero.{u5} π (CommGroupWithZero.toCommMonoidWithZero.{u5} π (Semifield.toCommGroupWithZero.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u5, u4} π E (Semiring.toMonoidWithZero.{u5} π (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (Module.toMulActionWithZero.{u5, u4} π E (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} E _inst_2) _inst_3))))) (Seminorm.instSMul.{0, u5, u4} NNReal π E (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))) (AddCommGroup.toAddGroup.{u4} E _inst_2) (SMulZeroClass.toSMul.{u5, u4} π E (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u5, u4} π E (CommMonoidWithZero.toZero.{u5} π (CommGroupWithZero.toCommMonoidWithZero.{u5} π (Semifield.toCommGroupWithZero.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u5, u4} π E (Semiring.toMonoidWithZero.{u5} π (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (Module.toMulActionWithZero.{u5, u4} π E (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} E _inst_2) _inst_3)))) Seminorm.smul_nnreal_real (Algebra.toSMul.{0, 0} NNReal NNReal instNNRealCommSemiring instNNRealSemiring (Algebra.id.{0} NNReal instNNRealCommSemiring)) (IsScalarTower.left.{0, 0} NNReal Real (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal instNNRealSemiring)) (NNReal.instMulActionNNRealToMonoidToMonoidWithZeroInstNNRealSemiring.{0} Real (MulActionWithZero.toMulAction.{0, 0} Real Real Real.instMonoidWithZeroReal Real.instZeroReal (MonoidWithZero.toMulActionWithZero.{0} Real Real.instMonoidWithZeroReal)))))) C (Finset.sup.{u4, u1} (Seminorm.{u5, u4} π E (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))) (AddCommGroup.toAddGroup.{u4} E _inst_2) (SMulZeroClass.toSMul.{u5, u4} π E (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u5, u4} π E (CommMonoidWithZero.toZero.{u5} π (CommGroupWithZero.toCommMonoidWithZero.{u5} π (Semifield.toCommGroupWithZero.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u5, u4} π E (Semiring.toMonoidWithZero.{u5} π (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (Module.toMulActionWithZero.{u5, u4} π E (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} E _inst_2) _inst_3))))) ΞΉ (Seminorm.instSemilatticeSup.{u5, u4} π E (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))) (AddCommGroup.toAddGroup.{u4} E _inst_2) (SMulZeroClass.toSMul.{u5, u4} π E (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u5, u4} π E (CommMonoidWithZero.toZero.{u5} π (CommGroupWithZero.toCommMonoidWithZero.{u5} π (Semifield.toCommGroupWithZero.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u5, u4} π E (Semiring.toMonoidWithZero.{u5} π (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (Module.toMulActionWithZero.{u5, u4} π E (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} E _inst_2) _inst_3))))) (Seminorm.instOrderBot.{u5, u4} π E (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))) _inst_2 _inst_3) s p)))))
+Case conversion may be inaccurate. Consider using '#align seminorm.is_bounded_const Seminorm.isBounded_constβ'. -/
theorem isBounded_const (ΞΉ' : Type _) [Nonempty ΞΉ'] {p : ΞΉ β Seminorm π E} {q : Seminorm πβ F}
(f : E βββ[Οββ] F) :
IsBounded p (fun _ : ΞΉ' => q) f β β (s : Finset ΞΉ)(C : ββ₯0), q.comp f β€ C β’ s.sup p := by
simp only [is_bounded, forall_const]
#align seminorm.is_bounded_const Seminorm.isBounded_const
+/- warning: seminorm.const_is_bounded -> Seminorm.const_isBounded is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {πβ : Type.{u2}} {E : Type.{u3}} {F : Type.{u4}} {ΞΉ' : Type.{u5}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u3} E] [_inst_3 : Module.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] [_inst_4 : NormedField.{u2} πβ] [_inst_5 : AddCommGroup.{u4} F] [_inst_6 : Module.{u2, u4} πβ F (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)] {Οββ : RingHom.{u1, u2} π πβ (NonAssocRing.toNonAssocSemiring.{u1} π (Ring.toNonAssocRing.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} πβ (Ring.toNonAssocRing.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))))} [_inst_7 : RingHomIsometric.{u1, u2} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) (NormedField.toHasNorm.{u1} π _inst_1) (NormedField.toHasNorm.{u2} πβ _inst_4) Οββ] (ΞΉ : Type.{u6}) [_inst_8 : Nonempty.{succ u6} ΞΉ] {p : Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))} {q : ΞΉ' -> (Seminorm.{u2, u4} πβ F (SeminormedCommRing.toSemiNormedRing.{u2} πβ (NormedCommRing.toSeminormedCommRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4))) (AddCommGroup.toAddGroup.{u4} F _inst_5) (SMulZeroClass.toHasSmul.{u2, u4} πβ F (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)))) (SMulWithZero.toSmulZeroClass.{u2, u4} πβ F (MulZeroClass.toHasZero.{u2} πβ (MulZeroOneClass.toMulZeroClass.{u2} πβ (MonoidWithZero.toMulZeroOneClass.{u2} πβ (Semiring.toMonoidWithZero.{u2} πβ (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)))) (MulActionWithZero.toSMulWithZero.{u2, u4} πβ F (Semiring.toMonoidWithZero.{u2} πβ (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)))) (Module.toMulActionWithZero.{u2, u4} πβ F (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5) _inst_6)))))} (f : LinearMap.{u1, u2, u3, u4} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5) _inst_3 _inst_6), Iff (Seminorm.IsBounded.{u1, u2, u3, u4, u6, u5} π πβ E F ΞΉ ΞΉ' _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 Οββ _inst_7 (fun (_x : ΞΉ) => p) q f) (forall (i : ΞΉ'), Exists.{1} NNReal (fun (C : NNReal) => LE.le.{u3} (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) (Preorder.toHasLe.{u3} (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) (PartialOrder.toPreorder.{u3} (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) (Seminorm.partialOrder.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))))) (Seminorm.comp.{u1, u2, u3, u4} π πβ E F (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (SeminormedCommRing.toSemiNormedRing.{u2} πβ (NormedCommRing.toSeminormedCommRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4))) Οββ _inst_7 _inst_2 _inst_5 _inst_3 _inst_6 (q i) f) (SMul.smul.{0, u3} NNReal (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) (Seminorm.hasSmul.{0, u1, u3} NNReal π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3)))) (MulAction.toHasSmul.{0, 0} NNReal Real (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal NNReal.semiring)) (NNReal.mulAction.{0} Real (Monoid.toMulAction.{0} Real Real.monoid))) (Mul.toSMul.{0} NNReal (MulOneClass.toHasMul.{0} NNReal (Monoid.toMulOneClass.{0} NNReal (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal NNReal.semiring))))) (IsScalarTower.left.{0, 0} NNReal Real (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal NNReal.semiring)) (NNReal.mulAction.{0} Real (Monoid.toMulAction.{0} Real Real.monoid)))) C p)))
+but is expected to have type
+ forall {π : Type.{u5}} {πβ : Type.{u3}} {E : Type.{u4}} {F : Type.{u2}} {ΞΉ' : Type.{u1}} [_inst_1 : NormedField.{u5} π] [_inst_2 : AddCommGroup.{u4} E] [_inst_3 : Module.{u5, u4} π E (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} E _inst_2)] [_inst_4 : NormedField.{u3} πβ] [_inst_5 : AddCommGroup.{u2} F] [_inst_6 : Module.{u3, u2} πβ F (DivisionSemiring.toSemiring.{u3} πβ (Semifield.toDivisionSemiring.{u3} πβ (Field.toSemifield.{u3} πβ (NormedField.toField.{u3} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F _inst_5)] {Οββ : RingHom.{u5, u3} π πβ (Semiring.toNonAssocSemiring.{u5} π (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (Semiring.toNonAssocSemiring.{u3} πβ (DivisionSemiring.toSemiring.{u3} πβ (Semifield.toDivisionSemiring.{u3} πβ (Field.toSemifield.{u3} πβ (NormedField.toField.{u3} πβ _inst_4)))))} [_inst_7 : RingHomIsometric.{u5, u3} π πβ (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1)))) (DivisionSemiring.toSemiring.{u3} πβ (Semifield.toDivisionSemiring.{u3} πβ (Field.toSemifield.{u3} πβ (NormedField.toField.{u3} πβ _inst_4)))) (NormedField.toNorm.{u5} π _inst_1) (NormedField.toNorm.{u3} πβ _inst_4) Οββ] (ΞΉ : Type.{u6}) [_inst_8 : Nonempty.{succ u6} ΞΉ] {p : Seminorm.{u5, u4} π E (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))) (AddCommGroup.toAddGroup.{u4} E _inst_2) (SMulZeroClass.toSMul.{u5, u4} π E (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u5, u4} π E (CommMonoidWithZero.toZero.{u5} π (CommGroupWithZero.toCommMonoidWithZero.{u5} π (Semifield.toCommGroupWithZero.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u5, u4} π E (Semiring.toMonoidWithZero.{u5} π (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (Module.toMulActionWithZero.{u5, u4} π E (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} E _inst_2) _inst_3))))} {q : ΞΉ' -> (Seminorm.{u3, u2} πβ F (SeminormedCommRing.toSeminormedRing.{u3} πβ (NormedCommRing.toSeminormedCommRing.{u3} πβ (NormedField.toNormedCommRing.{u3} πβ _inst_4))) (AddCommGroup.toAddGroup.{u2} F _inst_5) (SMulZeroClass.toSMul.{u3, u2} πβ F (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F _inst_5))))) (SMulWithZero.toSMulZeroClass.{u3, u2} πβ F (CommMonoidWithZero.toZero.{u3} πβ (CommGroupWithZero.toCommMonoidWithZero.{u3} πβ (Semifield.toCommGroupWithZero.{u3} πβ (Field.toSemifield.{u3} πβ (NormedField.toField.{u3} πβ _inst_4))))) (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F _inst_5))))) (MulActionWithZero.toSMulWithZero.{u3, u2} πβ F (Semiring.toMonoidWithZero.{u3} πβ (DivisionSemiring.toSemiring.{u3} πβ (Semifield.toDivisionSemiring.{u3} πβ (Field.toSemifield.{u3} πβ (NormedField.toField.{u3} πβ _inst_4))))) (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F _inst_5))))) (Module.toMulActionWithZero.{u3, u2} πβ F (DivisionSemiring.toSemiring.{u3} πβ (Semifield.toDivisionSemiring.{u3} πβ (Field.toSemifield.{u3} πβ (NormedField.toField.{u3} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F _inst_5) _inst_6)))))} (f : LinearMap.{u5, u3, u4, u2} π πβ (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1)))) (DivisionSemiring.toSemiring.{u3} πβ (Semifield.toDivisionSemiring.{u3} πβ (Field.toSemifield.{u3} πβ (NormedField.toField.{u3} πβ _inst_4)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u4} E _inst_2) (AddCommGroup.toAddCommMonoid.{u2} F _inst_5) _inst_3 _inst_6), Iff (Seminorm.IsBounded.{u5, u3, u4, u2, u6, u1} π πβ E F ΞΉ ΞΉ' _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 Οββ _inst_7 (fun (_x : ΞΉ) => p) q f) (forall (i : ΞΉ'), Exists.{1} NNReal (fun (C : NNReal) => LE.le.{u4} (Seminorm.{u5, u4} π E (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))) (AddCommGroup.toAddGroup.{u4} E _inst_2) (SMulZeroClass.toSMul.{u5, u4} π E (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u5, u4} π E (MonoidWithZero.toZero.{u5} π (Semiring.toMonoidWithZero.{u5} π (Ring.toSemiring.{u5} π (SeminormedRing.toRing.{u5} π (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u5, u4} π E (Semiring.toMonoidWithZero.{u5} π (Ring.toSemiring.{u5} π (SeminormedRing.toRing.{u5} π (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1)))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (Module.toMulActionWithZero.{u5, u4} π E (Ring.toSemiring.{u5} π (SeminormedRing.toRing.{u5} π (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u4} E _inst_2) _inst_3))))) (Preorder.toLE.{u4} (Seminorm.{u5, u4} π E (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))) (AddCommGroup.toAddGroup.{u4} E _inst_2) (SMulZeroClass.toSMul.{u5, u4} π E (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u5, u4} π E (MonoidWithZero.toZero.{u5} π (Semiring.toMonoidWithZero.{u5} π (Ring.toSemiring.{u5} π (SeminormedRing.toRing.{u5} π (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u5, u4} π E (Semiring.toMonoidWithZero.{u5} π (Ring.toSemiring.{u5} π (SeminormedRing.toRing.{u5} π (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1)))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (Module.toMulActionWithZero.{u5, u4} π E (Ring.toSemiring.{u5} π (SeminormedRing.toRing.{u5} π (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u4} E _inst_2) _inst_3))))) (PartialOrder.toPreorder.{u4} (Seminorm.{u5, u4} π E (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))) (AddCommGroup.toAddGroup.{u4} E _inst_2) (SMulZeroClass.toSMul.{u5, u4} π E (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u5, u4} π E (MonoidWithZero.toZero.{u5} π (Semiring.toMonoidWithZero.{u5} π (Ring.toSemiring.{u5} π (SeminormedRing.toRing.{u5} π (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u5, u4} π E (Semiring.toMonoidWithZero.{u5} π (Ring.toSemiring.{u5} π (SeminormedRing.toRing.{u5} π (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1)))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (Module.toMulActionWithZero.{u5, u4} π E (Ring.toSemiring.{u5} π (SeminormedRing.toRing.{u5} π (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u4} E _inst_2) _inst_3))))) (Seminorm.instPartialOrder.{u5, u4} π E (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))) (AddCommGroup.toAddGroup.{u4} E _inst_2) (SMulZeroClass.toSMul.{u5, u4} π E (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u5, u4} π E (MonoidWithZero.toZero.{u5} π (Semiring.toMonoidWithZero.{u5} π (Ring.toSemiring.{u5} π (SeminormedRing.toRing.{u5} π (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u5, u4} π E (Semiring.toMonoidWithZero.{u5} π (Ring.toSemiring.{u5} π (SeminormedRing.toRing.{u5} π (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1)))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (Module.toMulActionWithZero.{u5, u4} π E (Ring.toSemiring.{u5} π (SeminormedRing.toRing.{u5} π (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u4} E _inst_2) _inst_3))))))) (Seminorm.comp.{u5, u3, u4, u2} π πβ E F (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))) (SeminormedCommRing.toSeminormedRing.{u3} πβ (NormedCommRing.toSeminormedCommRing.{u3} πβ (NormedField.toNormedCommRing.{u3} πβ _inst_4))) Οββ _inst_7 _inst_2 _inst_5 _inst_3 _inst_6 (q i) f) (HSMul.hSMul.{0, u4, u4} NNReal (Seminorm.{u5, u4} π E (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))) (AddCommGroup.toAddGroup.{u4} E _inst_2) (SMulZeroClass.toSMul.{u5, u4} π E (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u5, u4} π E (CommMonoidWithZero.toZero.{u5} π (CommGroupWithZero.toCommMonoidWithZero.{u5} π (Semifield.toCommGroupWithZero.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u5, u4} π E (Semiring.toMonoidWithZero.{u5} π (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (Module.toMulActionWithZero.{u5, u4} π E (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} E _inst_2) _inst_3))))) (Seminorm.{u5, u4} π E (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))) (AddCommGroup.toAddGroup.{u4} E _inst_2) (SMulZeroClass.toSMul.{u5, u4} π E (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u5, u4} π E (CommMonoidWithZero.toZero.{u5} π (CommGroupWithZero.toCommMonoidWithZero.{u5} π (Semifield.toCommGroupWithZero.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u5, u4} π E (Semiring.toMonoidWithZero.{u5} π (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (Module.toMulActionWithZero.{u5, u4} π E (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} E _inst_2) _inst_3))))) (instHSMul.{0, u4} NNReal (Seminorm.{u5, u4} π E (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))) (AddCommGroup.toAddGroup.{u4} E _inst_2) (SMulZeroClass.toSMul.{u5, u4} π E (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u5, u4} π E (CommMonoidWithZero.toZero.{u5} π (CommGroupWithZero.toCommMonoidWithZero.{u5} π (Semifield.toCommGroupWithZero.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u5, u4} π E (Semiring.toMonoidWithZero.{u5} π (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (Module.toMulActionWithZero.{u5, u4} π E (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} E _inst_2) _inst_3))))) (Seminorm.instSMul.{0, u5, u4} NNReal π E (SeminormedCommRing.toSeminormedRing.{u5} π (NormedCommRing.toSeminormedCommRing.{u5} π (NormedField.toNormedCommRing.{u5} π _inst_1))) (AddCommGroup.toAddGroup.{u4} E _inst_2) (SMulZeroClass.toSMul.{u5, u4} π E (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u5, u4} π E (CommMonoidWithZero.toZero.{u5} π (CommGroupWithZero.toCommMonoidWithZero.{u5} π (Semifield.toCommGroupWithZero.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u5, u4} π E (Semiring.toMonoidWithZero.{u5} π (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1))))) (NegZeroClass.toZero.{u4} E (SubNegZeroMonoid.toNegZeroClass.{u4} E (SubtractionMonoid.toSubNegZeroMonoid.{u4} E (SubtractionCommMonoid.toSubtractionMonoid.{u4} E (AddCommGroup.toDivisionAddCommMonoid.{u4} E _inst_2))))) (Module.toMulActionWithZero.{u5, u4} π E (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u4} E _inst_2) _inst_3)))) Seminorm.smul_nnreal_real (Algebra.toSMul.{0, 0} NNReal NNReal instNNRealCommSemiring instNNRealSemiring (Algebra.id.{0} NNReal instNNRealCommSemiring)) (IsScalarTower.left.{0, 0} NNReal Real (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal instNNRealSemiring)) (NNReal.instMulActionNNRealToMonoidToMonoidWithZeroInstNNRealSemiring.{0} Real (MulActionWithZero.toMulAction.{0, 0} Real Real Real.instMonoidWithZeroReal Real.instZeroReal (MonoidWithZero.toMulActionWithZero.{0} Real Real.instMonoidWithZeroReal)))))) C p)))
+Case conversion may be inaccurate. Consider using '#align seminorm.const_is_bounded Seminorm.const_isBoundedβ'. -/
theorem const_isBounded (ΞΉ : Type _) [Nonempty ΞΉ] {p : Seminorm π E} {q : ΞΉ' β Seminorm πβ F}
(f : E βββ[Οββ] F) : IsBounded (fun _ : ΞΉ => p) q f β β i, β C : ββ₯0, (q i).comp f β€ C β’ p :=
by
@@ -253,6 +343,12 @@ theorem const_isBounded (ΞΉ : Type _) [Nonempty ΞΉ] {p : Seminorm π E} {q :
simp only [h, Finset.sup_singleton]
#align seminorm.const_is_bounded Seminorm.const_isBounded
+/- warning: seminorm.is_bounded_sup -> Seminorm.isBounded_sup is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {πβ : Type.{u2}} {E : Type.{u3}} {F : Type.{u4}} {ΞΉ : Type.{u5}} {ΞΉ' : Type.{u6}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u3} E] [_inst_3 : Module.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] [_inst_4 : NormedField.{u2} πβ] [_inst_5 : AddCommGroup.{u4} F] [_inst_6 : Module.{u2, u4} πβ F (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)] {Οββ : RingHom.{u1, u2} π πβ (NonAssocRing.toNonAssocSemiring.{u1} π (Ring.toNonAssocRing.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} πβ (Ring.toNonAssocRing.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))))} [_inst_7 : RingHomIsometric.{u1, u2} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) (NormedField.toHasNorm.{u1} π _inst_1) (NormedField.toHasNorm.{u2} πβ _inst_4) Οββ] {p : ΞΉ -> (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3)))))} {q : ΞΉ' -> (Seminorm.{u2, u4} πβ F (SeminormedCommRing.toSemiNormedRing.{u2} πβ (NormedCommRing.toSeminormedCommRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4))) (AddCommGroup.toAddGroup.{u4} F _inst_5) (SMulZeroClass.toHasSmul.{u2, u4} πβ F (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)))) (SMulWithZero.toSmulZeroClass.{u2, u4} πβ F (MulZeroClass.toHasZero.{u2} πβ (MulZeroOneClass.toMulZeroClass.{u2} πβ (MonoidWithZero.toMulZeroOneClass.{u2} πβ (Semiring.toMonoidWithZero.{u2} πβ (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)))) (MulActionWithZero.toSMulWithZero.{u2, u4} πβ F (Semiring.toMonoidWithZero.{u2} πβ (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)))) (Module.toMulActionWithZero.{u2, u4} πβ F (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5) _inst_6)))))} {f : LinearMap.{u1, u2, u3, u4} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5) _inst_3 _inst_6}, (Seminorm.IsBounded.{u1, u2, u3, u4, u5, u6} π πβ E F ΞΉ ΞΉ' _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 Οββ _inst_7 p q f) -> (forall (s' : Finset.{u6} ΞΉ'), Exists.{1} NNReal (fun (C : NNReal) => Exists.{succ u5} (Finset.{u5} ΞΉ) (fun (s : Finset.{u5} ΞΉ) => LE.le.{u3} (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) (Preorder.toHasLe.{u3} (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) (PartialOrder.toPreorder.{u3} (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) (Seminorm.partialOrder.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))))) (Seminorm.comp.{u1, u2, u3, u4} π πβ E F (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (SeminormedCommRing.toSemiNormedRing.{u2} πβ (NormedCommRing.toSeminormedCommRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4))) Οββ _inst_7 _inst_2 _inst_5 _inst_3 _inst_6 (Finset.sup.{u4, u6} (Seminorm.{u2, u4} πβ F (SeminormedCommRing.toSemiNormedRing.{u2} πβ (NormedCommRing.toSeminormedCommRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4))) (AddCommGroup.toAddGroup.{u4} F _inst_5) (SMulZeroClass.toHasSmul.{u2, u4} πβ F (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)))) (SMulWithZero.toSmulZeroClass.{u2, u4} πβ F (MulZeroClass.toHasZero.{u2} πβ (MulZeroOneClass.toMulZeroClass.{u2} πβ (MonoidWithZero.toMulZeroOneClass.{u2} πβ (Semiring.toMonoidWithZero.{u2} πβ (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)))) (MulActionWithZero.toSMulWithZero.{u2, u4} πβ F (Semiring.toMonoidWithZero.{u2} πβ (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)))) (Module.toMulActionWithZero.{u2, u4} πβ F (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5) _inst_6))))) ΞΉ' (Seminorm.semilatticeSup.{u2, u4} πβ F (SeminormedCommRing.toSemiNormedRing.{u2} πβ (NormedCommRing.toSeminormedCommRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4))) (AddCommGroup.toAddGroup.{u4} F _inst_5) (SMulZeroClass.toHasSmul.{u2, u4} πβ F (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)))) (SMulWithZero.toSmulZeroClass.{u2, u4} πβ F (MulZeroClass.toHasZero.{u2} πβ (MulZeroOneClass.toMulZeroClass.{u2} πβ (MonoidWithZero.toMulZeroOneClass.{u2} πβ (Semiring.toMonoidWithZero.{u2} πβ (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)))) (MulActionWithZero.toSMulWithZero.{u2, u4} πβ F (Semiring.toMonoidWithZero.{u2} πβ (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)))) (Module.toMulActionWithZero.{u2, u4} πβ F (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5) _inst_6))))) (Seminorm.orderBot.{u2, u4} πβ F (SeminormedCommRing.toSemiNormedRing.{u2} πβ (NormedCommRing.toSeminormedCommRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4))) _inst_5 _inst_6) s' q) f) (SMul.smul.{0, u3} NNReal (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) (Seminorm.hasSmul.{0, u1, u3} NNReal π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3)))) (MulAction.toHasSmul.{0, 0} NNReal Real (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal NNReal.semiring)) (NNReal.mulAction.{0} Real (Monoid.toMulAction.{0} Real Real.monoid))) (Mul.toSMul.{0} NNReal (MulOneClass.toHasMul.{0} NNReal (Monoid.toMulOneClass.{0} NNReal (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal NNReal.semiring))))) (IsScalarTower.left.{0, 0} NNReal Real (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal NNReal.semiring)) (NNReal.mulAction.{0} Real (Monoid.toMulAction.{0} Real Real.monoid)))) C (Finset.sup.{u3, u5} (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) ΞΉ (Seminorm.semilatticeSup.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) (Seminorm.orderBot.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) _inst_2 _inst_3) s p)))))
+but is expected to have type
+ forall {π : Type.{u6}} {πβ : Type.{u4}} {E : Type.{u5}} {F : Type.{u3}} {ΞΉ : Type.{u2}} {ΞΉ' : Type.{u1}} [_inst_1 : NormedField.{u6} π] [_inst_2 : AddCommGroup.{u5} E] [_inst_3 : Module.{u6, u5} π E (DivisionSemiring.toSemiring.{u6} π (Semifield.toDivisionSemiring.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u5} E _inst_2)] [_inst_4 : NormedField.{u4} πβ] [_inst_5 : AddCommGroup.{u3} F] [_inst_6 : Module.{u4, u3} πβ F (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F _inst_5)] {Οββ : RingHom.{u6, u4} π πβ (Semiring.toNonAssocSemiring.{u6} π (DivisionSemiring.toSemiring.{u6} π (Semifield.toDivisionSemiring.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1))))) (Semiring.toNonAssocSemiring.{u4} πβ (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4)))))} [_inst_7 : RingHomIsometric.{u6, u4} π πβ (DivisionSemiring.toSemiring.{u6} π (Semifield.toDivisionSemiring.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1)))) (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4)))) (NormedField.toNorm.{u6} π _inst_1) (NormedField.toNorm.{u4} πβ _inst_4) Οββ] {p : ΞΉ -> (Seminorm.{u6, u5} π E (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1))) (AddCommGroup.toAddGroup.{u5} E _inst_2) (SMulZeroClass.toSMul.{u6, u5} π E (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u6, u5} π E (CommMonoidWithZero.toZero.{u6} π (CommGroupWithZero.toCommMonoidWithZero.{u6} π (Semifield.toCommGroupWithZero.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u6, u5} π E (Semiring.toMonoidWithZero.{u6} π (DivisionSemiring.toSemiring.{u6} π (Semifield.toDivisionSemiring.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (Module.toMulActionWithZero.{u6, u5} π E (DivisionSemiring.toSemiring.{u6} π (Semifield.toDivisionSemiring.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u5} E _inst_2) _inst_3)))))} {q : ΞΉ' -> (Seminorm.{u4, u3} πβ F (SeminormedCommRing.toSeminormedRing.{u4} πβ (NormedCommRing.toSeminormedCommRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ _inst_4))) (AddCommGroup.toAddGroup.{u3} F _inst_5) (SMulZeroClass.toSMul.{u4, u3} πβ F (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_5))))) (SMulWithZero.toSMulZeroClass.{u4, u3} πβ F (CommMonoidWithZero.toZero.{u4} πβ (CommGroupWithZero.toCommMonoidWithZero.{u4} πβ (Semifield.toCommGroupWithZero.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4))))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_5))))) (MulActionWithZero.toSMulWithZero.{u4, u3} πβ F (Semiring.toMonoidWithZero.{u4} πβ (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4))))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_5))))) (Module.toMulActionWithZero.{u4, u3} πβ F (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F _inst_5) _inst_6)))))} {f : LinearMap.{u6, u4, u5, u3} π πβ (DivisionSemiring.toSemiring.{u6} π (Semifield.toDivisionSemiring.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1)))) (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u5} E _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_5) _inst_3 _inst_6}, (Seminorm.IsBounded.{u6, u4, u5, u3, u2, u1} π πβ E F ΞΉ ΞΉ' _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 Οββ _inst_7 p q f) -> (forall (s' : Finset.{u1} ΞΉ'), Exists.{1} NNReal (fun (C : NNReal) => Exists.{succ u2} (Finset.{u2} ΞΉ) (fun (s : Finset.{u2} ΞΉ) => LE.le.{u5} (Seminorm.{u6, u5} π E (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1))) (AddCommGroup.toAddGroup.{u5} E _inst_2) (SMulZeroClass.toSMul.{u6, u5} π E (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u6, u5} π E (MonoidWithZero.toZero.{u6} π (Semiring.toMonoidWithZero.{u6} π (Ring.toSemiring.{u6} π (SeminormedRing.toRing.{u6} π (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1))))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u6, u5} π E (Semiring.toMonoidWithZero.{u6} π (Ring.toSemiring.{u6} π (SeminormedRing.toRing.{u6} π (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1)))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (Module.toMulActionWithZero.{u6, u5} π E (Ring.toSemiring.{u6} π (SeminormedRing.toRing.{u6} π (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u5} E _inst_2) _inst_3))))) (Preorder.toLE.{u5} (Seminorm.{u6, u5} π E (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1))) (AddCommGroup.toAddGroup.{u5} E _inst_2) (SMulZeroClass.toSMul.{u6, u5} π E (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u6, u5} π E (MonoidWithZero.toZero.{u6} π (Semiring.toMonoidWithZero.{u6} π (Ring.toSemiring.{u6} π (SeminormedRing.toRing.{u6} π (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1))))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u6, u5} π E (Semiring.toMonoidWithZero.{u6} π (Ring.toSemiring.{u6} π (SeminormedRing.toRing.{u6} π (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1)))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (Module.toMulActionWithZero.{u6, u5} π E (Ring.toSemiring.{u6} π (SeminormedRing.toRing.{u6} π (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u5} E _inst_2) _inst_3))))) (PartialOrder.toPreorder.{u5} (Seminorm.{u6, u5} π E (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1))) (AddCommGroup.toAddGroup.{u5} E _inst_2) (SMulZeroClass.toSMul.{u6, u5} π E (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u6, u5} π E (MonoidWithZero.toZero.{u6} π (Semiring.toMonoidWithZero.{u6} π (Ring.toSemiring.{u6} π (SeminormedRing.toRing.{u6} π (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1))))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u6, u5} π E (Semiring.toMonoidWithZero.{u6} π (Ring.toSemiring.{u6} π (SeminormedRing.toRing.{u6} π (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1)))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (Module.toMulActionWithZero.{u6, u5} π E (Ring.toSemiring.{u6} π (SeminormedRing.toRing.{u6} π (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u5} E _inst_2) _inst_3))))) (Seminorm.instPartialOrder.{u6, u5} π E (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1))) (AddCommGroup.toAddGroup.{u5} E _inst_2) (SMulZeroClass.toSMul.{u6, u5} π E (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u6, u5} π E (MonoidWithZero.toZero.{u6} π (Semiring.toMonoidWithZero.{u6} π (Ring.toSemiring.{u6} π (SeminormedRing.toRing.{u6} π (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1))))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u6, u5} π E (Semiring.toMonoidWithZero.{u6} π (Ring.toSemiring.{u6} π (SeminormedRing.toRing.{u6} π (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1)))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (Module.toMulActionWithZero.{u6, u5} π E (Ring.toSemiring.{u6} π (SeminormedRing.toRing.{u6} π (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u5} E _inst_2) _inst_3))))))) (Seminorm.comp.{u6, u4, u5, u3} π πβ E F (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1))) (SeminormedCommRing.toSeminormedRing.{u4} πβ (NormedCommRing.toSeminormedCommRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ _inst_4))) Οββ _inst_7 _inst_2 _inst_5 _inst_3 _inst_6 (Finset.sup.{u3, u1} (Seminorm.{u4, u3} πβ F (SeminormedCommRing.toSeminormedRing.{u4} πβ (NormedCommRing.toSeminormedCommRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ _inst_4))) (AddCommGroup.toAddGroup.{u3} F _inst_5) (SMulZeroClass.toSMul.{u4, u3} πβ F (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_5))))) (SMulWithZero.toSMulZeroClass.{u4, u3} πβ F (CommMonoidWithZero.toZero.{u4} πβ (CommGroupWithZero.toCommMonoidWithZero.{u4} πβ (Semifield.toCommGroupWithZero.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4))))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_5))))) (MulActionWithZero.toSMulWithZero.{u4, u3} πβ F (Semiring.toMonoidWithZero.{u4} πβ (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4))))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_5))))) (Module.toMulActionWithZero.{u4, u3} πβ F (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F _inst_5) _inst_6))))) ΞΉ' (Seminorm.instSemilatticeSup.{u4, u3} πβ F (SeminormedCommRing.toSeminormedRing.{u4} πβ (NormedCommRing.toSeminormedCommRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ _inst_4))) (AddCommGroup.toAddGroup.{u3} F _inst_5) (SMulZeroClass.toSMul.{u4, u3} πβ F (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_5))))) (SMulWithZero.toSMulZeroClass.{u4, u3} πβ F (CommMonoidWithZero.toZero.{u4} πβ (CommGroupWithZero.toCommMonoidWithZero.{u4} πβ (Semifield.toCommGroupWithZero.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4))))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_5))))) (MulActionWithZero.toSMulWithZero.{u4, u3} πβ F (Semiring.toMonoidWithZero.{u4} πβ (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4))))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_5))))) (Module.toMulActionWithZero.{u4, u3} πβ F (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F _inst_5) _inst_6))))) (Seminorm.instOrderBot.{u4, u3} πβ F (SeminormedCommRing.toSeminormedRing.{u4} πβ (NormedCommRing.toSeminormedCommRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ _inst_4))) _inst_5 _inst_6) s' q) f) (HSMul.hSMul.{0, u5, u5} NNReal (Seminorm.{u6, u5} π E (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1))) (AddCommGroup.toAddGroup.{u5} E _inst_2) (SMulZeroClass.toSMul.{u6, u5} π E (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u6, u5} π E (CommMonoidWithZero.toZero.{u6} π (CommGroupWithZero.toCommMonoidWithZero.{u6} π (Semifield.toCommGroupWithZero.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u6, u5} π E (Semiring.toMonoidWithZero.{u6} π (DivisionSemiring.toSemiring.{u6} π (Semifield.toDivisionSemiring.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (Module.toMulActionWithZero.{u6, u5} π E (DivisionSemiring.toSemiring.{u6} π (Semifield.toDivisionSemiring.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u5} E _inst_2) _inst_3))))) (Seminorm.{u6, u5} π E (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1))) (AddCommGroup.toAddGroup.{u5} E _inst_2) (SMulZeroClass.toSMul.{u6, u5} π E (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u6, u5} π E (CommMonoidWithZero.toZero.{u6} π (CommGroupWithZero.toCommMonoidWithZero.{u6} π (Semifield.toCommGroupWithZero.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u6, u5} π E (Semiring.toMonoidWithZero.{u6} π (DivisionSemiring.toSemiring.{u6} π (Semifield.toDivisionSemiring.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (Module.toMulActionWithZero.{u6, u5} π E (DivisionSemiring.toSemiring.{u6} π (Semifield.toDivisionSemiring.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u5} E _inst_2) _inst_3))))) (instHSMul.{0, u5} NNReal (Seminorm.{u6, u5} π E (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1))) (AddCommGroup.toAddGroup.{u5} E _inst_2) (SMulZeroClass.toSMul.{u6, u5} π E (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u6, u5} π E (CommMonoidWithZero.toZero.{u6} π (CommGroupWithZero.toCommMonoidWithZero.{u6} π (Semifield.toCommGroupWithZero.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u6, u5} π E (Semiring.toMonoidWithZero.{u6} π (DivisionSemiring.toSemiring.{u6} π (Semifield.toDivisionSemiring.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (Module.toMulActionWithZero.{u6, u5} π E (DivisionSemiring.toSemiring.{u6} π (Semifield.toDivisionSemiring.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u5} E _inst_2) _inst_3))))) (Seminorm.instSMul.{0, u6, u5} NNReal π E (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1))) (AddCommGroup.toAddGroup.{u5} E _inst_2) (SMulZeroClass.toSMul.{u6, u5} π E (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u6, u5} π E (CommMonoidWithZero.toZero.{u6} π (CommGroupWithZero.toCommMonoidWithZero.{u6} π (Semifield.toCommGroupWithZero.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u6, u5} π E (Semiring.toMonoidWithZero.{u6} π (DivisionSemiring.toSemiring.{u6} π (Semifield.toDivisionSemiring.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (Module.toMulActionWithZero.{u6, u5} π E (DivisionSemiring.toSemiring.{u6} π (Semifield.toDivisionSemiring.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u5} E _inst_2) _inst_3)))) Seminorm.smul_nnreal_real (Algebra.toSMul.{0, 0} NNReal NNReal instNNRealCommSemiring instNNRealSemiring (Algebra.id.{0} NNReal instNNRealCommSemiring)) (IsScalarTower.left.{0, 0} NNReal Real (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal instNNRealSemiring)) (NNReal.instMulActionNNRealToMonoidToMonoidWithZeroInstNNRealSemiring.{0} Real (MulActionWithZero.toMulAction.{0, 0} Real Real Real.instMonoidWithZeroReal Real.instZeroReal (MonoidWithZero.toMulActionWithZero.{0} Real Real.instMonoidWithZeroReal)))))) C (Finset.sup.{u5, u2} (Seminorm.{u6, u5} π E (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1))) (AddCommGroup.toAddGroup.{u5} E _inst_2) (SMulZeroClass.toSMul.{u6, u5} π E (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u6, u5} π E (CommMonoidWithZero.toZero.{u6} π (CommGroupWithZero.toCommMonoidWithZero.{u6} π (Semifield.toCommGroupWithZero.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u6, u5} π E (Semiring.toMonoidWithZero.{u6} π (DivisionSemiring.toSemiring.{u6} π (Semifield.toDivisionSemiring.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (Module.toMulActionWithZero.{u6, u5} π E (DivisionSemiring.toSemiring.{u6} π (Semifield.toDivisionSemiring.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u5} E _inst_2) _inst_3))))) ΞΉ (Seminorm.instSemilatticeSup.{u6, u5} π E (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1))) (AddCommGroup.toAddGroup.{u5} E _inst_2) (SMulZeroClass.toSMul.{u6, u5} π E (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u6, u5} π E (CommMonoidWithZero.toZero.{u6} π (CommGroupWithZero.toCommMonoidWithZero.{u6} π (Semifield.toCommGroupWithZero.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u6, u5} π E (Semiring.toMonoidWithZero.{u6} π (DivisionSemiring.toSemiring.{u6} π (Semifield.toDivisionSemiring.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E _inst_2))))) (Module.toMulActionWithZero.{u6, u5} π E (DivisionSemiring.toSemiring.{u6} π (Semifield.toDivisionSemiring.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u5} E _inst_2) _inst_3))))) (Seminorm.instOrderBot.{u6, u5} π E (SeminormedCommRing.toSeminormedRing.{u6} π (NormedCommRing.toSeminormedCommRing.{u6} π (NormedField.toNormedCommRing.{u6} π _inst_1))) _inst_2 _inst_3) s p)))))
+Case conversion may be inaccurate. Consider using '#align seminorm.is_bounded_sup Seminorm.isBounded_supβ'. -/
theorem isBounded_sup {p : ΞΉ β Seminorm π E} {q : ΞΉ' β Seminorm πβ F} {f : E βββ[Οββ] F}
(hf : IsBounded p q f) (s' : Finset ΞΉ') :
β (C : ββ₯0)(s : Finset ΞΉ), (s'.sup q).comp f β€ C β’ s.sup p := by
@@ -281,11 +377,19 @@ section Topology
variable [NormedField π] [AddCommGroup E] [Module π E] [Nonempty ΞΉ]
+#print WithSeminorms /-
/-- The proposition that the topology of `E` is induced by a family of seminorms `p`. -/
structure WithSeminorms (p : SeminormFamily π E ΞΉ) [t : TopologicalSpace E] : Prop where
topology_eq_withSeminorms : t = p.ModuleFilterBasis.topology
#align with_seminorms WithSeminorms
+-/
+/- warning: with_seminorms.with_seminorms_eq -> WithSeminorms.withSeminorms_eq is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u3} ΞΉ] {p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3} [t : TopologicalSpace.{u2} E], (WithSeminorms.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p t) -> (Eq.{succ u2} (TopologicalSpace.{u2} E) t (ModuleFilterBasis.topology.{u1, u2} π E (SeminormedCommRing.toCommRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) _inst_2 _inst_3 (SeminormFamily.moduleFilterBasis.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p _inst_4)))
+but is expected to have type
+ forall {π : Type.{u3}} {E : Type.{u2}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u3} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u1} ΞΉ] {p : SeminormFamily.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3} [t : TopologicalSpace.{u2} E], (WithSeminorms.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p t) -> (Eq.{succ u2} (TopologicalSpace.{u2} E) t (ModuleFilterBasis.topology.{u3, u2} π E (EuclideanDomain.toCommRing.{u3} π (Field.toEuclideanDomain.{u3} π (NormedField.toField.{u3} π _inst_1))) (UniformSpace.toTopologicalSpace.{u3} π (PseudoMetricSpace.toUniformSpace.{u3} π (SeminormedRing.toPseudoMetricSpace.{u3} π (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1)))))) _inst_2 _inst_3 (SeminormFamily.moduleFilterBasis.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 p _inst_4)))
+Case conversion may be inaccurate. Consider using '#align with_seminorms.with_seminorms_eq WithSeminorms.withSeminorms_eqβ'. -/
theorem WithSeminorms.withSeminorms_eq {p : SeminormFamily π E ΞΉ} [t : TopologicalSpace E]
(hp : WithSeminorms p) : t = p.ModuleFilterBasis.topology :=
hp.1
@@ -295,12 +399,24 @@ variable [TopologicalSpace E]
variable {p : SeminormFamily π E ΞΉ}
+/- warning: with_seminorms.topological_add_group -> WithSeminorms.topologicalAddGroup is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u3} ΞΉ] [_inst_5 : TopologicalSpace.{u2} E] {p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3}, (WithSeminorms.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p _inst_5) -> (TopologicalAddGroup.{u2} E _inst_5 (AddCommGroup.toAddGroup.{u2} E _inst_2))
+but is expected to have type
+ forall {π : Type.{u3}} {E : Type.{u2}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u3} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u1} ΞΉ] [_inst_5 : TopologicalSpace.{u2} E] {p : SeminormFamily.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3}, (WithSeminorms.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p _inst_5) -> (TopologicalAddGroup.{u2} E _inst_5 (AddCommGroup.toAddGroup.{u2} E _inst_2))
+Case conversion may be inaccurate. Consider using '#align with_seminorms.topological_add_group WithSeminorms.topologicalAddGroupβ'. -/
theorem WithSeminorms.topologicalAddGroup (hp : WithSeminorms p) : TopologicalAddGroup E :=
by
rw [hp.with_seminorms_eq]
exact AddGroupFilterBasis.isTopologicalAddGroup _
#align with_seminorms.topological_add_group WithSeminorms.topologicalAddGroup
+/- warning: with_seminorms.has_basis -> WithSeminorms.hasBasis is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u3} ΞΉ] [_inst_5 : TopologicalSpace.{u2} E] {p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3}, (WithSeminorms.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p _inst_5) -> (Filter.HasBasis.{u2, succ u2} E (Set.{u2} E) (nhds.{u2} E _inst_5 (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))))))) (fun (s : Set.{u2} E) => Membership.Mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.hasMem.{u2} (Set.{u2} E)) s (SeminormFamily.basisSets.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) (id.{succ u2} (Set.{u2} E)))
+but is expected to have type
+ forall {π : Type.{u3}} {E : Type.{u2}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u3} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u1} ΞΉ] [_inst_5 : TopologicalSpace.{u2} E] {p : SeminormFamily.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3}, (WithSeminorms.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p _inst_5) -> (Filter.HasBasis.{u2, succ u2} E (Set.{u2} E) (nhds.{u2} E _inst_5 (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2)))))))) (fun (s : Set.{u2} E) => Membership.mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.instMembershipSet.{u2} (Set.{u2} E)) s (SeminormFamily.basisSets.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) (id.{succ u2} (Set.{u2} E)))
+Case conversion may be inaccurate. Consider using '#align with_seminorms.has_basis WithSeminorms.hasBasisβ'. -/
theorem WithSeminorms.hasBasis (hp : WithSeminorms p) :
(π (0 : E)).HasBasis (fun s : Set E => s β p.basis_sets) id :=
by
@@ -308,6 +424,12 @@ theorem WithSeminorms.hasBasis (hp : WithSeminorms p) :
exact AddGroupFilterBasis.nhds_zero_hasBasis _
#align with_seminorms.has_basis WithSeminorms.hasBasis
+/- warning: with_seminorms.has_basis_zero_ball -> WithSeminorms.hasBasis_zero_ball is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u3} ΞΉ] [_inst_5 : TopologicalSpace.{u2} E] {p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3}, (WithSeminorms.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p _inst_5) -> (Filter.HasBasis.{u2, succ u3} E (Prod.{u3, 0} (Finset.{u3} ΞΉ) Real) (nhds.{u2} E _inst_5 (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))))))) (fun (sr : Prod.{u3, 0} (Finset.{u3} ΞΉ) Real) => LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) (Prod.snd.{u3, 0} (Finset.{u3} ΞΉ) Real sr)) (fun (sr : Prod.{u3, 0} (Finset.{u3} ΞΉ) Real) => Seminorm.ball.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) _inst_2 (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (Finset.sup.{u2, u3} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) ΞΉ (Seminorm.semilatticeSup.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (Seminorm.orderBot.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) _inst_2 _inst_3) (Prod.fst.{u3, 0} (Finset.{u3} ΞΉ) Real sr) p) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2)))))))) (Prod.snd.{u3, 0} (Finset.{u3} ΞΉ) Real sr)))
+but is expected to have type
+ forall {π : Type.{u3}} {E : Type.{u2}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u3} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u1} ΞΉ] [_inst_5 : TopologicalSpace.{u2} E] {p : SeminormFamily.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3}, (WithSeminorms.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p _inst_5) -> (Filter.HasBasis.{u2, succ u1} E (Prod.{u1, 0} (Finset.{u1} ΞΉ) Real) (nhds.{u2} E _inst_5 (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2)))))))) (fun (sr : Prod.{u1, 0} (Finset.{u1} ΞΉ) Real) => LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) (Prod.snd.{u1, 0} (Finset.{u1} ΞΉ) Real sr)) (fun (sr : Prod.{u1, 0} (Finset.{u1} ΞΉ) Real) => Seminorm.ball.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) _inst_2 (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (Finset.sup.{u2, u1} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) ΞΉ (Seminorm.instSemilatticeSup.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (Seminorm.instOrderBot.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) _inst_2 _inst_3) (Prod.fst.{u1, 0} (Finset.{u1} ΞΉ) Real sr) p) (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))))) (Prod.snd.{u1, 0} (Finset.{u1} ΞΉ) Real sr)))
+Case conversion may be inaccurate. Consider using '#align with_seminorms.has_basis_zero_ball WithSeminorms.hasBasis_zero_ballβ'. -/
theorem WithSeminorms.hasBasis_zero_ball (hp : WithSeminorms p) :
(π (0 : E)).HasBasis (fun sr : Finset ΞΉ Γ β => 0 < sr.2) fun sr => (sr.1.sup p).ball 0 sr.2 :=
by
@@ -320,6 +442,12 @@ theorem WithSeminorms.hasBasis_zero_ball (hp : WithSeminorms p) :
exact β¨_, β¨s, r, hr, rflβ©, hVβ©
#align with_seminorms.has_basis_zero_ball WithSeminorms.hasBasis_zero_ball
+/- warning: with_seminorms.has_basis_ball -> WithSeminorms.hasBasis_ball is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u3} ΞΉ] [_inst_5 : TopologicalSpace.{u2} E] {p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3}, (WithSeminorms.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p _inst_5) -> (forall {x : E}, Filter.HasBasis.{u2, succ u3} E (Prod.{u3, 0} (Finset.{u3} ΞΉ) Real) (nhds.{u2} E _inst_5 x) (fun (sr : Prod.{u3, 0} (Finset.{u3} ΞΉ) Real) => LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) (Prod.snd.{u3, 0} (Finset.{u3} ΞΉ) Real sr)) (fun (sr : Prod.{u3, 0} (Finset.{u3} ΞΉ) Real) => Seminorm.ball.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) _inst_2 (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (Finset.sup.{u2, u3} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) ΞΉ (Seminorm.semilatticeSup.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (Seminorm.orderBot.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) _inst_2 _inst_3) (Prod.fst.{u3, 0} (Finset.{u3} ΞΉ) Real sr) p) x (Prod.snd.{u3, 0} (Finset.{u3} ΞΉ) Real sr)))
+but is expected to have type
+ forall {π : Type.{u3}} {E : Type.{u2}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u3} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u1} ΞΉ] [_inst_5 : TopologicalSpace.{u2} E] {p : SeminormFamily.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3}, (WithSeminorms.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p _inst_5) -> (forall {x : E}, Filter.HasBasis.{u2, succ u1} E (Prod.{u1, 0} (Finset.{u1} ΞΉ) Real) (nhds.{u2} E _inst_5 x) (fun (sr : Prod.{u1, 0} (Finset.{u1} ΞΉ) Real) => LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) (Prod.snd.{u1, 0} (Finset.{u1} ΞΉ) Real sr)) (fun (sr : Prod.{u1, 0} (Finset.{u1} ΞΉ) Real) => Seminorm.ball.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) _inst_2 (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (Finset.sup.{u2, u1} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) ΞΉ (Seminorm.instSemilatticeSup.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (Seminorm.instOrderBot.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) _inst_2 _inst_3) (Prod.fst.{u1, 0} (Finset.{u1} ΞΉ) Real sr) p) x (Prod.snd.{u1, 0} (Finset.{u1} ΞΉ) Real sr)))
+Case conversion may be inaccurate. Consider using '#align with_seminorms.has_basis_ball WithSeminorms.hasBasis_ballβ'. -/
theorem WithSeminorms.hasBasis_ball (hp : WithSeminorms p) {x : E} :
(π (x : E)).HasBasis (fun sr : Finset ΞΉ Γ β => 0 < sr.2) fun sr => (sr.1.sup p).ball x sr.2 :=
by
@@ -332,6 +460,12 @@ theorem WithSeminorms.hasBasis_ball (hp : WithSeminorms p) {x : E} :
rwa [vadd_eq_add, add_zero] at this
#align with_seminorms.has_basis_ball WithSeminorms.hasBasis_ball
+/- warning: with_seminorms.mem_nhds_iff -> WithSeminorms.mem_nhds_iff is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u3} ΞΉ] [_inst_5 : TopologicalSpace.{u2} E] {p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3}, (WithSeminorms.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p _inst_5) -> (forall (x : E) (U : Set.{u2} E), Iff (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) U (nhds.{u2} E _inst_5 x)) (Exists.{succ u3} (Finset.{u3} ΞΉ) (fun (s : Finset.{u3} ΞΉ) => Exists.{1} Real (fun (r : Real) => Exists.{0} (GT.gt.{0} Real Real.hasLt r (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))) (fun (H : GT.gt.{0} Real Real.hasLt r (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))) => HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) (Seminorm.ball.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) _inst_2 (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (Finset.sup.{u2, u3} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) ΞΉ (Seminorm.semilatticeSup.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (Seminorm.orderBot.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) _inst_2 _inst_3) s p) x r) U)))))
+but is expected to have type
+ forall {π : Type.{u3}} {E : Type.{u2}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u3} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u1} ΞΉ] [_inst_5 : TopologicalSpace.{u2} E] {p : SeminormFamily.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3}, (WithSeminorms.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p _inst_5) -> (forall (x : E) (U : Set.{u2} E), Iff (Membership.mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (instMembershipSetFilter.{u2} E) U (nhds.{u2} E _inst_5 x)) (Exists.{succ u1} (Finset.{u1} ΞΉ) (fun (s : Finset.{u1} ΞΉ) => Exists.{1} Real (fun (r : Real) => And (GT.gt.{0} Real Real.instLTReal r (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))) (HasSubset.Subset.{u2} (Set.{u2} E) (Set.instHasSubsetSet.{u2} E) (Seminorm.ball.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) _inst_2 (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (Finset.sup.{u2, u1} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) ΞΉ (Seminorm.instSemilatticeSup.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (Seminorm.instOrderBot.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) _inst_2 _inst_3) s p) x r) U)))))
+Case conversion may be inaccurate. Consider using '#align with_seminorms.mem_nhds_iff WithSeminorms.mem_nhds_iffβ'. -/
/-- The `x`-neighbourhoods of a space whose topology is induced by a family of seminorms
are exactly the sets which contain seminorm balls around `x`.-/
theorem WithSeminorms.mem_nhds_iff (hp : WithSeminorms p) (x : E) (U : Set E) :
@@ -339,6 +473,12 @@ theorem WithSeminorms.mem_nhds_iff (hp : WithSeminorms p) (x : E) (U : Set E) :
rw [hp.has_basis_ball.mem_iff, Prod.exists]
#align with_seminorms.mem_nhds_iff WithSeminorms.mem_nhds_iff
+/- warning: with_seminorms.is_open_iff_mem_balls -> WithSeminorms.isOpen_iff_mem_balls is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u3} ΞΉ] [_inst_5 : TopologicalSpace.{u2} E] {p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3}, (WithSeminorms.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p _inst_5) -> (forall (U : Set.{u2} E), Iff (IsOpen.{u2} E _inst_5 U) (forall (x : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x U) -> (Exists.{succ u3} (Finset.{u3} ΞΉ) (fun (s : Finset.{u3} ΞΉ) => Exists.{1} Real (fun (r : Real) => Exists.{0} (GT.gt.{0} Real Real.hasLt r (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))) (fun (H : GT.gt.{0} Real Real.hasLt r (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))) => HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) (Seminorm.ball.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) _inst_2 (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (Finset.sup.{u2, u3} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) ΞΉ (Seminorm.semilatticeSup.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (Seminorm.orderBot.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) _inst_2 _inst_3) s p) x r) U))))))
+but is expected to have type
+ forall {π : Type.{u3}} {E : Type.{u2}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u3} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u1} ΞΉ] [_inst_5 : TopologicalSpace.{u2} E] {p : SeminormFamily.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3}, (WithSeminorms.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p _inst_5) -> (forall (U : Set.{u2} E), Iff (IsOpen.{u2} E _inst_5 U) (forall (x : E), (Membership.mem.{u2, u2} E (Set.{u2} E) (Set.instMembershipSet.{u2} E) x U) -> (Exists.{succ u1} (Finset.{u1} ΞΉ) (fun (s : Finset.{u1} ΞΉ) => Exists.{1} Real (fun (r : Real) => And (GT.gt.{0} Real Real.instLTReal r (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))) (HasSubset.Subset.{u2} (Set.{u2} E) (Set.instHasSubsetSet.{u2} E) (Seminorm.ball.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) _inst_2 (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (Finset.sup.{u2, u1} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) ΞΉ (Seminorm.instSemilatticeSup.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (Seminorm.instOrderBot.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) _inst_2 _inst_3) s p) x r) U))))))
+Case conversion may be inaccurate. Consider using '#align with_seminorms.is_open_iff_mem_balls WithSeminorms.isOpen_iff_mem_ballsβ'. -/
/-- The open sets of a space whose topology is induced by a family of seminorms
are exactly the sets which contain seminorm balls around all of their points.-/
theorem WithSeminorms.isOpen_iff_mem_balls (hp : WithSeminorms p) (U : Set E) :
@@ -346,12 +486,18 @@ theorem WithSeminorms.isOpen_iff_mem_balls (hp : WithSeminorms p) (U : Set E) :
simp_rw [β WithSeminorms.mem_nhds_iff hp _ U, isOpen_iff_mem_nhds]
#align with_seminorms.is_open_iff_mem_balls WithSeminorms.isOpen_iff_mem_balls
+/- warning: with_seminorms.t1_of_separating -> WithSeminorms.T1_of_separating is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u3} ΞΉ] [_inst_5 : TopologicalSpace.{u2} E] {p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3}, (WithSeminorms.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p _inst_5) -> (forall (x : E), (Ne.{succ u2} E x (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))))))) -> (Exists.{succ u3} ΞΉ (fun (i : ΞΉ) => Ne.{1} Real (coeFn.{succ u2, succ u2} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (fun (_x : Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) => E -> Real) (Seminorm.hasCoeToFun.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (p i) x) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))))) -> (T1Space.{u2} E _inst_5)
+but is expected to have type
+ forall {π : Type.{u3}} {E : Type.{u2}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u3} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u1} ΞΉ] [_inst_5 : TopologicalSpace.{u2} E] {p : SeminormFamily.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3}, (WithSeminorms.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p _inst_5) -> (forall (x : E), (Ne.{succ u2} E x (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2)))))))) -> (Exists.{succ u1} ΞΉ (fun (i : ΞΉ) => Ne.{1} ((fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) x) (FunLike.coe.{succ u2, succ u2, 1} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) E (fun (_x : E) => (fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) _x) (SubadditiveHomClass.toFunLike.{u2, u2, 0} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) E Real (AddZeroClass.toAdd.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real (AddCommMonoid.toAddMonoid.{0} Real (OrderedAddCommMonoid.toAddCommMonoid.{0} Real Real.orderedAddCommMonoid)))) (Preorder.toLE.{0} Real (PartialOrder.toPreorder.{0} Real (OrderedAddCommMonoid.toPartialOrder.{0} Real Real.orderedAddCommMonoid))) (AddGroupSeminormClass.toAddLEAddHomClass.{u2, u2, 0} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) E Real (AddCommGroup.toAddGroup.{u2} E _inst_2) Real.orderedAddCommMonoid (SeminormClass.toAddGroupSeminormClass.{u2, u3, u2} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (Seminorm.instSeminormClass.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))))))) (p i) x) (OfNat.ofNat.{0} ((fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) x) 0 (Zero.toOfNat0.{0} ((fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) x) Real.instZeroReal))))) -> (T1Space.{u2} E _inst_5)
+Case conversion may be inaccurate. Consider using '#align with_seminorms.t1_of_separating WithSeminorms.T1_of_separatingβ'. -/
/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (x Β«expr β Β» 0) -/
/- Note that through the following lemmas, one also immediately has that separating families
of seminorms induce Tβ and Tβ topologies by `topological_add_group.t2_space`
and `topological_add_group.t3_space` -/
/-- A separating family of seminorms induces a Tβ topology. -/
-theorem WithSeminorms.t1_of_separating (hp : WithSeminorms p)
+theorem WithSeminorms.T1_of_separating (hp : WithSeminorms p)
(h : β (x) (_ : x β 0), β i, p i x β 0) : T1Space E :=
by
haveI := hp.topological_add_group
@@ -361,10 +507,16 @@ theorem WithSeminorms.t1_of_separating (hp : WithSeminorms p)
cases' h x hx with i pi_nonzero
refine' β¨{i}, p i x, by positivity, subset_compl_singleton_iff.mpr _β©
rw [Finset.sup_singleton, mem_ball, zero_sub, map_neg_eq_map, not_lt]
-#align with_seminorms.t1_of_separating WithSeminorms.t1_of_separating
-
+#align with_seminorms.t1_of_separating WithSeminorms.T1_of_separating
+
+/- warning: with_seminorms.separating_of_t1 -> WithSeminorms.separating_of_T1 is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u3} ΞΉ] [_inst_5 : TopologicalSpace.{u2} E] {p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3} [_inst_6 : T1Space.{u2} E _inst_5], (WithSeminorms.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p _inst_5) -> (forall (x : E), (Ne.{succ u2} E x (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))))))) -> (Exists.{succ u3} ΞΉ (fun (i : ΞΉ) => Ne.{1} Real (coeFn.{succ u2, succ u2} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (fun (_x : Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) => E -> Real) (Seminorm.hasCoeToFun.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (p i) x) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))))))
+but is expected to have type
+ forall {π : Type.{u2}} {E : Type.{u3}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u2} π] [_inst_2 : AddCommGroup.{u3} E] [_inst_3 : Module.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] [_inst_4 : Nonempty.{succ u1} ΞΉ] [_inst_5 : TopologicalSpace.{u3} E] {p : SeminormFamily.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3} [_inst_6 : T1Space.{u3} E _inst_5], (WithSeminorms.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p _inst_5) -> (forall (x : E), (Ne.{succ u3} E x (OfNat.ofNat.{u3} E 0 (Zero.toOfNat0.{u3} E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2)))))))) -> (Exists.{succ u1} ΞΉ (fun (i : ΞΉ) => Ne.{1} ((fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) x) (FunLike.coe.{succ u3, succ u3, 1} (Seminorm.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) E (fun (_x : E) => (fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) _x) (SubadditiveHomClass.toFunLike.{u3, u3, 0} (Seminorm.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) E Real (AddZeroClass.toAdd.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_2))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real (AddCommMonoid.toAddMonoid.{0} Real (OrderedAddCommMonoid.toAddCommMonoid.{0} Real Real.orderedAddCommMonoid)))) (Preorder.toLE.{0} Real (PartialOrder.toPreorder.{0} Real (OrderedAddCommMonoid.toPartialOrder.{0} Real Real.orderedAddCommMonoid))) (AddGroupSeminormClass.toAddLEAddHomClass.{u3, u3, 0} (Seminorm.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) E Real (AddCommGroup.toAddGroup.{u3} E _inst_2) Real.orderedAddCommMonoid (SeminormClass.toAddGroupSeminormClass.{u3, u2, u3} (Seminorm.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3)))) (Seminorm.instSeminormClass.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3)))))))) (p i) x) (OfNat.ofNat.{0} ((fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) x) 0 (Zero.toOfNat0.{0} ((fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) x) Real.instZeroReal)))))
+Case conversion may be inaccurate. Consider using '#align with_seminorms.separating_of_t1 WithSeminorms.separating_of_T1β'. -/
/-- A family of seminorms inducing a Tβ topology is separating. -/
-theorem WithSeminorms.separating_of_t1 [T1Space E] (hp : WithSeminorms p) (x : E) (hx : x β 0) :
+theorem WithSeminorms.separating_of_T1 [T1Space E] (hp : WithSeminorms p) (x : E) (hx : x β 0) :
β i, p i x β 0 := by
have := ((t1Space_TFAE E).out 0 9).mp inferInstance
by_contra' h
@@ -372,17 +524,23 @@ theorem WithSeminorms.separating_of_t1 [T1Space E] (hp : WithSeminorms p) (x : E
rw [hp.has_basis_zero_ball.specializes_iff]
rintro β¨s, rβ© (hr : 0 < r)
simp only [ball_finset_sup_eq_Inter _ _ _ hr, mem_Interβ, mem_ball_zero, h, hr, forall_true_iff]
-#align with_seminorms.separating_of_t1 WithSeminorms.separating_of_t1
-
+#align with_seminorms.separating_of_t1 WithSeminorms.separating_of_T1
+
+/- warning: with_seminorms.separating_iff_t1 -> WithSeminorms.separating_iff_T1 is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u3} ΞΉ] [_inst_5 : TopologicalSpace.{u2} E] {p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3}, (WithSeminorms.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p _inst_5) -> (Iff (forall (x : E), (Ne.{succ u2} E x (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))))))) -> (Exists.{succ u3} ΞΉ (fun (i : ΞΉ) => Ne.{1} Real (coeFn.{succ u2, succ u2} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (fun (_x : Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) => E -> Real) (Seminorm.hasCoeToFun.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (p i) x) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))))) (T1Space.{u2} E _inst_5))
+but is expected to have type
+ forall {π : Type.{u3}} {E : Type.{u2}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u3} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u1} ΞΉ] [_inst_5 : TopologicalSpace.{u2} E] {p : SeminormFamily.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3}, (WithSeminorms.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p _inst_5) -> (Iff (forall (x : E), (Ne.{succ u2} E x (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2)))))))) -> (Exists.{succ u1} ΞΉ (fun (i : ΞΉ) => Ne.{1} ((fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) x) (FunLike.coe.{succ u2, succ u2, 1} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) E (fun (_x : E) => (fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) _x) (SubadditiveHomClass.toFunLike.{u2, u2, 0} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) E Real (AddZeroClass.toAdd.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real (AddCommMonoid.toAddMonoid.{0} Real (OrderedAddCommMonoid.toAddCommMonoid.{0} Real Real.orderedAddCommMonoid)))) (Preorder.toLE.{0} Real (PartialOrder.toPreorder.{0} Real (OrderedAddCommMonoid.toPartialOrder.{0} Real Real.orderedAddCommMonoid))) (AddGroupSeminormClass.toAddLEAddHomClass.{u2, u2, 0} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) E Real (AddCommGroup.toAddGroup.{u2} E _inst_2) Real.orderedAddCommMonoid (SeminormClass.toAddGroupSeminormClass.{u2, u3, u2} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (Seminorm.instSeminormClass.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))))))) (p i) x) (OfNat.ofNat.{0} ((fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) x) 0 (Zero.toOfNat0.{0} ((fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) x) Real.instZeroReal))))) (T1Space.{u2} E _inst_5))
+Case conversion may be inaccurate. Consider using '#align with_seminorms.separating_iff_t1 WithSeminorms.separating_iff_T1β'. -/
/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (x Β«expr β Β» 0) -/
/-- A family of seminorms is separating iff it induces a Tβ topology. -/
-theorem WithSeminorms.separating_iff_t1 (hp : WithSeminorms p) :
+theorem WithSeminorms.separating_iff_T1 (hp : WithSeminorms p) :
(β (x) (_ : x β 0), β i, p i x β 0) β T1Space E :=
by
- refine' β¨WithSeminorms.t1_of_separating hp, _β©
+ refine' β¨WithSeminorms.T1_of_separating hp, _β©
intro
- exact WithSeminorms.separating_of_t1 hp
-#align with_seminorms.separating_iff_t1 WithSeminorms.separating_iff_t1
+ exact WithSeminorms.separating_of_T1 hp
+#align with_seminorms.separating_iff_t1 WithSeminorms.separating_iff_T1
end Topology
@@ -392,6 +550,12 @@ variable [NormedField π] [AddCommGroup E] [Module π E] [Nonempty ΞΉ] [Topo
variable {p : SeminormFamily π E ΞΉ}
+/- warning: with_seminorms.tendsto_nhds' -> WithSeminorms.tendsto_nhds' is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} {ΞΉ : Type.{u4}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u4} ΞΉ] [_inst_5 : TopologicalSpace.{u2} E] {p : SeminormFamily.{u1, u2, u4} π E ΞΉ _inst_1 _inst_2 _inst_3}, (WithSeminorms.{u1, u2, u4} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p _inst_5) -> (forall (u : F -> E) {f : Filter.{u3} F} (yβ : E), Iff (Filter.Tendsto.{u3, u2} F E u f (nhds.{u2} E _inst_5 yβ)) (forall (s : Finset.{u4} ΞΉ) (Ξ΅ : Real), (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) Ξ΅) -> (Filter.Eventually.{u3} F (fun (x : F) => LT.lt.{0} Real Real.hasLt (coeFn.{succ u2, succ u2} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (fun (_x : Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) => E -> Real) (Seminorm.hasCoeToFun.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (Finset.sup.{u2, u4} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) ΞΉ (Seminorm.semilatticeSup.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (Seminorm.orderBot.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) _inst_2 _inst_3) s p) (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2)))) (u x) yβ)) Ξ΅) f)))
+but is expected to have type
+ forall {π : Type.{u4}} {E : Type.{u3}} {F : Type.{u1}} {ΞΉ : Type.{u2}} [_inst_1 : NormedField.{u4} π] [_inst_2 : AddCommGroup.{u3} E] [_inst_3 : Module.{u4, u3} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] [_inst_4 : Nonempty.{succ u2} ΞΉ] [_inst_5 : TopologicalSpace.{u3} E] {p : SeminormFamily.{u4, u3, u2} π E ΞΉ _inst_1 _inst_2 _inst_3}, (WithSeminorms.{u4, u3, u2} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p _inst_5) -> (forall (u : F -> E) {f : Filter.{u1} F} (yβ : E), Iff (Filter.Tendsto.{u1, u3} F E u f (nhds.{u3} E _inst_5 yβ)) (forall (s : Finset.{u2} ΞΉ) (Ξ΅ : Real), (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) Ξ΅) -> (Filter.Eventually.{u1} F (fun (x : F) => LT.lt.{0} ((fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) (HSub.hSub.{u3, u3, u3} E E E (instHSub.{u3} E (SubNegMonoid.toSub.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_2)))) (u x) yβ)) Real.instLTReal (FunLike.coe.{succ u3, succ u3, 1} (Seminorm.{u4, u3} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u4, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u4, u3} π E (CommMonoidWithZero.toZero.{u4} π (CommGroupWithZero.toCommMonoidWithZero.{u4} π (Semifield.toCommGroupWithZero.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u4, u3} π E (Semiring.toMonoidWithZero.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u4, u3} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) E (fun (_x : E) => (fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) _x) (SubadditiveHomClass.toFunLike.{u3, u3, 0} (Seminorm.{u4, u3} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u4, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u4, u3} π E (CommMonoidWithZero.toZero.{u4} π (CommGroupWithZero.toCommMonoidWithZero.{u4} π (Semifield.toCommGroupWithZero.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u4, u3} π E (Semiring.toMonoidWithZero.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u4, u3} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) E Real (AddZeroClass.toAdd.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_2))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real (AddCommMonoid.toAddMonoid.{0} Real (OrderedAddCommMonoid.toAddCommMonoid.{0} Real Real.orderedAddCommMonoid)))) (Preorder.toLE.{0} Real (PartialOrder.toPreorder.{0} Real (OrderedAddCommMonoid.toPartialOrder.{0} Real Real.orderedAddCommMonoid))) (AddGroupSeminormClass.toAddLEAddHomClass.{u3, u3, 0} (Seminorm.{u4, u3} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u4, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u4, u3} π E (CommMonoidWithZero.toZero.{u4} π (CommGroupWithZero.toCommMonoidWithZero.{u4} π (Semifield.toCommGroupWithZero.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u4, u3} π E (Semiring.toMonoidWithZero.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u4, u3} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) E Real (AddCommGroup.toAddGroup.{u3} E _inst_2) Real.orderedAddCommMonoid (SeminormClass.toAddGroupSeminormClass.{u3, u4, u3} (Seminorm.{u4, u3} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u4, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u4, u3} π E (CommMonoidWithZero.toZero.{u4} π (CommGroupWithZero.toCommMonoidWithZero.{u4} π (Semifield.toCommGroupWithZero.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u4, u3} π E (Semiring.toMonoidWithZero.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u4, u3} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u4, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u4, u3} π E (CommMonoidWithZero.toZero.{u4} π (CommGroupWithZero.toCommMonoidWithZero.{u4} π (Semifield.toCommGroupWithZero.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u4, u3} π E (Semiring.toMonoidWithZero.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u4, u3} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3)))) (Seminorm.instSeminormClass.{u4, u3} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u4, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u4, u3} π E (CommMonoidWithZero.toZero.{u4} π (CommGroupWithZero.toCommMonoidWithZero.{u4} π (Semifield.toCommGroupWithZero.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u4, u3} π E (Semiring.toMonoidWithZero.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u4, u3} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3)))))))) (Finset.sup.{u3, u2} (Seminorm.{u4, u3} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u4, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u4, u3} π E (CommMonoidWithZero.toZero.{u4} π (CommGroupWithZero.toCommMonoidWithZero.{u4} π (Semifield.toCommGroupWithZero.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u4, u3} π E (Semiring.toMonoidWithZero.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u4, u3} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) ΞΉ (Seminorm.instSemilatticeSup.{u4, u3} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u4, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u4, u3} π E (CommMonoidWithZero.toZero.{u4} π (CommGroupWithZero.toCommMonoidWithZero.{u4} π (Semifield.toCommGroupWithZero.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u4, u3} π E (Semiring.toMonoidWithZero.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u4, u3} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) (Seminorm.instOrderBot.{u4, u3} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_1))) _inst_2 _inst_3) s p) (HSub.hSub.{u3, u3, u3} E E E (instHSub.{u3} E (SubNegMonoid.toSub.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_2)))) (u x) yβ)) Ξ΅) f)))
+Case conversion may be inaccurate. Consider using '#align with_seminorms.tendsto_nhds' WithSeminorms.tendsto_nhds'β'. -/
/-- Convergence along filters for `with_seminorms`.
Variant with `finset.sup`. -/
@@ -400,6 +564,12 @@ theorem WithSeminorms.tendsto_nhds' (hp : WithSeminorms p) (u : F β E) {f : Fi
by simp [hp.has_basis_ball.tendsto_right_iff]
#align with_seminorms.tendsto_nhds' WithSeminorms.tendsto_nhds'
+/- warning: with_seminorms.tendsto_nhds -> WithSeminorms.tendsto_nhds is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} {ΞΉ : Type.{u4}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u4} ΞΉ] [_inst_5 : TopologicalSpace.{u2} E] {p : SeminormFamily.{u1, u2, u4} π E ΞΉ _inst_1 _inst_2 _inst_3}, (WithSeminorms.{u1, u2, u4} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p _inst_5) -> (forall (u : F -> E) {f : Filter.{u3} F} (yβ : E), Iff (Filter.Tendsto.{u3, u2} F E u f (nhds.{u2} E _inst_5 yβ)) (forall (i : ΞΉ) (Ξ΅ : Real), (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) Ξ΅) -> (Filter.Eventually.{u3} F (fun (x : F) => LT.lt.{0} Real Real.hasLt (coeFn.{succ u2, succ u2} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (fun (_x : Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) => E -> Real) (Seminorm.hasCoeToFun.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (p i) (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2)))) (u x) yβ)) Ξ΅) f)))
+but is expected to have type
+ forall {π : Type.{u4}} {E : Type.{u3}} {F : Type.{u1}} {ΞΉ : Type.{u2}} [_inst_1 : NormedField.{u4} π] [_inst_2 : AddCommGroup.{u3} E] [_inst_3 : Module.{u4, u3} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] [_inst_4 : Nonempty.{succ u2} ΞΉ] [_inst_5 : TopologicalSpace.{u3} E] {p : SeminormFamily.{u4, u3, u2} π E ΞΉ _inst_1 _inst_2 _inst_3}, (WithSeminorms.{u4, u3, u2} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p _inst_5) -> (forall (u : F -> E) {f : Filter.{u1} F} (yβ : E), Iff (Filter.Tendsto.{u1, u3} F E u f (nhds.{u3} E _inst_5 yβ)) (forall (i : ΞΉ) (Ξ΅ : Real), (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) Ξ΅) -> (Filter.Eventually.{u1} F (fun (x : F) => LT.lt.{0} ((fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) (HSub.hSub.{u3, u3, u3} E E E (instHSub.{u3} E (SubNegMonoid.toSub.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_2)))) (u x) yβ)) Real.instLTReal (FunLike.coe.{succ u3, succ u3, 1} (Seminorm.{u4, u3} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u4, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u4, u3} π E (CommMonoidWithZero.toZero.{u4} π (CommGroupWithZero.toCommMonoidWithZero.{u4} π (Semifield.toCommGroupWithZero.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u4, u3} π E (Semiring.toMonoidWithZero.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u4, u3} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) E (fun (_x : E) => (fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) _x) (SubadditiveHomClass.toFunLike.{u3, u3, 0} (Seminorm.{u4, u3} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u4, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u4, u3} π E (CommMonoidWithZero.toZero.{u4} π (CommGroupWithZero.toCommMonoidWithZero.{u4} π (Semifield.toCommGroupWithZero.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u4, u3} π E (Semiring.toMonoidWithZero.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u4, u3} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) E Real (AddZeroClass.toAdd.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_2))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real (AddCommMonoid.toAddMonoid.{0} Real (OrderedAddCommMonoid.toAddCommMonoid.{0} Real Real.orderedAddCommMonoid)))) (Preorder.toLE.{0} Real (PartialOrder.toPreorder.{0} Real (OrderedAddCommMonoid.toPartialOrder.{0} Real Real.orderedAddCommMonoid))) (AddGroupSeminormClass.toAddLEAddHomClass.{u3, u3, 0} (Seminorm.{u4, u3} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u4, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u4, u3} π E (CommMonoidWithZero.toZero.{u4} π (CommGroupWithZero.toCommMonoidWithZero.{u4} π (Semifield.toCommGroupWithZero.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u4, u3} π E (Semiring.toMonoidWithZero.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u4, u3} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) E Real (AddCommGroup.toAddGroup.{u3} E _inst_2) Real.orderedAddCommMonoid (SeminormClass.toAddGroupSeminormClass.{u3, u4, u3} (Seminorm.{u4, u3} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u4, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u4, u3} π E (CommMonoidWithZero.toZero.{u4} π (CommGroupWithZero.toCommMonoidWithZero.{u4} π (Semifield.toCommGroupWithZero.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u4, u3} π E (Semiring.toMonoidWithZero.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u4, u3} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u4, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u4, u3} π E (CommMonoidWithZero.toZero.{u4} π (CommGroupWithZero.toCommMonoidWithZero.{u4} π (Semifield.toCommGroupWithZero.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u4, u3} π E (Semiring.toMonoidWithZero.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u4, u3} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3)))) (Seminorm.instSeminormClass.{u4, u3} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u4, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u4, u3} π E (CommMonoidWithZero.toZero.{u4} π (CommGroupWithZero.toCommMonoidWithZero.{u4} π (Semifield.toCommGroupWithZero.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u4, u3} π E (Semiring.toMonoidWithZero.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u4, u3} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3)))))))) (p i) (HSub.hSub.{u3, u3, u3} E E E (instHSub.{u3} E (SubNegMonoid.toSub.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_2)))) (u x) yβ)) Ξ΅) f)))
+Case conversion may be inaccurate. Consider using '#align with_seminorms.tendsto_nhds WithSeminorms.tendsto_nhdsβ'. -/
/-- Convergence along filters for `with_seminorms`. -/
theorem WithSeminorms.tendsto_nhds (hp : WithSeminorms p) (u : F β E) {f : Filter F} (yβ : E) :
Filter.Tendsto u f (π yβ) β β i Ξ΅, 0 < Ξ΅ β βαΆ x in f, p i (u x - yβ) < Ξ΅ :=
@@ -412,6 +582,12 @@ theorem WithSeminorms.tendsto_nhds (hp : WithSeminorms p) (u : F β E) {f : Fil
variable [SemilatticeSup F] [Nonempty F]
+/- warning: with_seminorms.tendsto_nhds_at_top -> WithSeminorms.tendsto_nhds_atTop is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} {ΞΉ : Type.{u4}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u4} ΞΉ] [_inst_5 : TopologicalSpace.{u2} E] {p : SeminormFamily.{u1, u2, u4} π E ΞΉ _inst_1 _inst_2 _inst_3} [_inst_6 : SemilatticeSup.{u3} F] [_inst_7 : Nonempty.{succ u3} F], (WithSeminorms.{u1, u2, u4} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p _inst_5) -> (forall (u : F -> E) (yβ : E), Iff (Filter.Tendsto.{u3, u2} F E u (Filter.atTop.{u3} F (PartialOrder.toPreorder.{u3} F (SemilatticeSup.toPartialOrder.{u3} F _inst_6))) (nhds.{u2} E _inst_5 yβ)) (forall (i : ΞΉ) (Ξ΅ : Real), (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) Ξ΅) -> (Exists.{succ u3} F (fun (xβ : F) => forall (x : F), (LE.le.{u3} F (Preorder.toHasLe.{u3} F (PartialOrder.toPreorder.{u3} F (SemilatticeSup.toPartialOrder.{u3} F _inst_6))) xβ x) -> (LT.lt.{0} Real Real.hasLt (coeFn.{succ u2, succ u2} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (fun (_x : Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) => E -> Real) (Seminorm.hasCoeToFun.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (p i) (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2)))) (u x) yβ)) Ξ΅)))))
+but is expected to have type
+ forall {π : Type.{u4}} {E : Type.{u3}} {F : Type.{u1}} {ΞΉ : Type.{u2}} [_inst_1 : NormedField.{u4} π] [_inst_2 : AddCommGroup.{u3} E] [_inst_3 : Module.{u4, u3} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] [_inst_4 : Nonempty.{succ u2} ΞΉ] [_inst_5 : TopologicalSpace.{u3} E] {p : SeminormFamily.{u4, u3, u2} π E ΞΉ _inst_1 _inst_2 _inst_3} [_inst_6 : SemilatticeSup.{u1} F] [_inst_7 : Nonempty.{succ u1} F], (WithSeminorms.{u4, u3, u2} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 p _inst_5) -> (forall (u : F -> E) (yβ : E), Iff (Filter.Tendsto.{u1, u3} F E u (Filter.atTop.{u1} F (PartialOrder.toPreorder.{u1} F (SemilatticeSup.toPartialOrder.{u1} F _inst_6))) (nhds.{u3} E _inst_5 yβ)) (forall (i : ΞΉ) (Ξ΅ : Real), (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) Ξ΅) -> (Exists.{succ u1} F (fun (xβ : F) => forall (x : F), (LE.le.{u1} F (Preorder.toLE.{u1} F (PartialOrder.toPreorder.{u1} F (SemilatticeSup.toPartialOrder.{u1} F _inst_6))) xβ x) -> (LT.lt.{0} ((fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) (HSub.hSub.{u3, u3, u3} E E E (instHSub.{u3} E (SubNegMonoid.toSub.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_2)))) (u x) yβ)) Real.instLTReal (FunLike.coe.{succ u3, succ u3, 1} (Seminorm.{u4, u3} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u4, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u4, u3} π E (CommMonoidWithZero.toZero.{u4} π (CommGroupWithZero.toCommMonoidWithZero.{u4} π (Semifield.toCommGroupWithZero.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u4, u3} π E (Semiring.toMonoidWithZero.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u4, u3} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) E (fun (_x : E) => (fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) _x) (SubadditiveHomClass.toFunLike.{u3, u3, 0} (Seminorm.{u4, u3} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u4, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u4, u3} π E (CommMonoidWithZero.toZero.{u4} π (CommGroupWithZero.toCommMonoidWithZero.{u4} π (Semifield.toCommGroupWithZero.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u4, u3} π E (Semiring.toMonoidWithZero.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u4, u3} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) E Real (AddZeroClass.toAdd.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_2))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real (AddCommMonoid.toAddMonoid.{0} Real (OrderedAddCommMonoid.toAddCommMonoid.{0} Real Real.orderedAddCommMonoid)))) (Preorder.toLE.{0} Real (PartialOrder.toPreorder.{0} Real (OrderedAddCommMonoid.toPartialOrder.{0} Real Real.orderedAddCommMonoid))) (AddGroupSeminormClass.toAddLEAddHomClass.{u3, u3, 0} (Seminorm.{u4, u3} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u4, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u4, u3} π E (CommMonoidWithZero.toZero.{u4} π (CommGroupWithZero.toCommMonoidWithZero.{u4} π (Semifield.toCommGroupWithZero.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u4, u3} π E (Semiring.toMonoidWithZero.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u4, u3} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) E Real (AddCommGroup.toAddGroup.{u3} E _inst_2) Real.orderedAddCommMonoid (SeminormClass.toAddGroupSeminormClass.{u3, u4, u3} (Seminorm.{u4, u3} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u4, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u4, u3} π E (CommMonoidWithZero.toZero.{u4} π (CommGroupWithZero.toCommMonoidWithZero.{u4} π (Semifield.toCommGroupWithZero.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u4, u3} π E (Semiring.toMonoidWithZero.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u4, u3} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u4, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u4, u3} π E (CommMonoidWithZero.toZero.{u4} π (CommGroupWithZero.toCommMonoidWithZero.{u4} π (Semifield.toCommGroupWithZero.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u4, u3} π E (Semiring.toMonoidWithZero.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u4, u3} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3)))) (Seminorm.instSeminormClass.{u4, u3} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u4, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u4, u3} π E (CommMonoidWithZero.toZero.{u4} π (CommGroupWithZero.toCommMonoidWithZero.{u4} π (Semifield.toCommGroupWithZero.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u4, u3} π E (Semiring.toMonoidWithZero.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u4, u3} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3)))))))) (p i) (HSub.hSub.{u3, u3, u3} E E E (instHSub.{u3} E (SubNegMonoid.toSub.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_2)))) (u x) yβ)) Ξ΅)))))
+Case conversion may be inaccurate. Consider using '#align with_seminorms.tendsto_nhds_at_top WithSeminorms.tendsto_nhds_atTopβ'. -/
/-- Limit `β β` for `with_seminorms`. -/
theorem WithSeminorms.tendsto_nhds_atTop (hp : WithSeminorms p) (u : F β E) (yβ : E) :
Filter.Tendsto u Filter.atTop (π yβ) β β i Ξ΅, 0 < Ξ΅ β β xβ, β x, xβ β€ x β p i (u x - yβ) < Ξ΅ :=
@@ -432,6 +608,12 @@ variable [Nonempty ΞΉ]
include t
+/- warning: seminorm_family.with_seminorms_of_nhds -> SeminormFamily.withSeminorms_of_nhds is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [t : TopologicalSpace.{u2} E] [_inst_4 : TopologicalAddGroup.{u2} E t (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_5 : Nonempty.{succ u3} ΞΉ] (p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3), (Eq.{succ u2} (Filter.{u2} E) (nhds.{u2} E t (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))))))) (FilterBasis.filter.{u2} E (AddGroupFilterBasis.toFilterBasis.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2) (ModuleFilterBasis.toAddGroupFilterBasis.{u1, u2} π E (SeminormedCommRing.toCommRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) _inst_2 _inst_3 (SeminormFamily.moduleFilterBasis.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p _inst_5))))) -> (WithSeminorms.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_5 p t)
+but is expected to have type
+ forall {π : Type.{u3}} {E : Type.{u2}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u3} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [t : Nonempty.{succ u1} ΞΉ] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] (p : SeminormFamily.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3), (Eq.{succ u2} (Filter.{u2} E) (nhds.{u2} E _inst_4 (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2)))))))) (FilterBasis.filter.{u2} E (AddGroupFilterBasis.toFilterBasis.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2) (ModuleFilterBasis.toAddGroupFilterBasis.{u3, u2} π E (EuclideanDomain.toCommRing.{u3} π (Field.toEuclideanDomain.{u3} π (NormedField.toField.{u3} π _inst_1))) (UniformSpace.toTopologicalSpace.{u3} π (PseudoMetricSpace.toUniformSpace.{u3} π (SeminormedRing.toPseudoMetricSpace.{u3} π (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1)))))) _inst_2 _inst_3 (SeminormFamily.moduleFilterBasis.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 p t))))) -> (WithSeminorms.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 t p _inst_4)
+Case conversion may be inaccurate. Consider using '#align seminorm_family.with_seminorms_of_nhds SeminormFamily.withSeminorms_of_nhdsβ'. -/
theorem SeminormFamily.withSeminorms_of_nhds (p : SeminormFamily π E ΞΉ)
(h : π (0 : E) = p.ModuleFilterBasis.toFilterBasis.filterβ) : WithSeminorms p :=
by
@@ -441,12 +623,24 @@ theorem SeminormFamily.withSeminorms_of_nhds (p : SeminormFamily π E ΞΉ)
exact h
#align seminorm_family.with_seminorms_of_nhds SeminormFamily.withSeminorms_of_nhds
+/- warning: seminorm_family.with_seminorms_of_has_basis -> SeminormFamily.withSeminorms_of_hasBasis is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [t : TopologicalSpace.{u2} E] [_inst_4 : TopologicalAddGroup.{u2} E t (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_5 : Nonempty.{succ u3} ΞΉ] (p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3), (Filter.HasBasis.{u2, succ u2} E (Set.{u2} E) (nhds.{u2} E t (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))))))) (fun (s : Set.{u2} E) => Membership.Mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.hasMem.{u2} (Set.{u2} E)) s (SeminormFamily.basisSets.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) (id.{succ u2} (Set.{u2} E))) -> (WithSeminorms.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_5 p t)
+but is expected to have type
+ forall {π : Type.{u3}} {E : Type.{u2}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u3} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [t : Nonempty.{succ u1} ΞΉ] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] (p : SeminormFamily.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3), (Filter.HasBasis.{u2, succ u2} E (Set.{u2} E) (nhds.{u2} E _inst_4 (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2)))))))) (fun (s : Set.{u2} E) => Membership.mem.{u2, u2} (Set.{u2} E) (Set.{u2} (Set.{u2} E)) (Set.instMembershipSet.{u2} (Set.{u2} E)) s (SeminormFamily.basisSets.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 p)) (id.{succ u2} (Set.{u2} E))) -> (WithSeminorms.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 t p _inst_4)
+Case conversion may be inaccurate. Consider using '#align seminorm_family.with_seminorms_of_has_basis SeminormFamily.withSeminorms_of_hasBasisβ'. -/
theorem SeminormFamily.withSeminorms_of_hasBasis (p : SeminormFamily π E ΞΉ)
(h : (π (0 : E)).HasBasis (fun s : Set E => s β p.basis_sets) id) : WithSeminorms p :=
p.withSeminorms_of_nhds <|
Filter.HasBasis.eq_of_same_basis h p.AddGroupFilterBasis.toFilterBasis.HasBasis
#align seminorm_family.with_seminorms_of_has_basis SeminormFamily.withSeminorms_of_hasBasis
+/- warning: seminorm_family.with_seminorms_iff_nhds_eq_infi -> SeminormFamily.withSeminorms_iff_nhds_eq_iInf is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [t : TopologicalSpace.{u2} E] [_inst_4 : TopologicalAddGroup.{u2} E t (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_5 : Nonempty.{succ u3} ΞΉ] (p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3), Iff (WithSeminorms.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_5 p t) (Eq.{succ u2} (Filter.{u2} E) (nhds.{u2} E t (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))))))) (iInf.{u2, succ u3} (Filter.{u2} E) (ConditionallyCompleteLattice.toHasInf.{u2} (Filter.{u2} E) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} E) (Filter.completeLattice.{u2} E))) ΞΉ (fun (i : ΞΉ) => Filter.comap.{u2, 0} E Real (coeFn.{succ u2, succ u2} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (fun (_x : Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) => E -> Real) (Seminorm.hasCoeToFun.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (p i)) (nhds.{0} Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))))))
+but is expected to have type
+ forall {π : Type.{u3}} {E : Type.{u2}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u3} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [t : Nonempty.{succ u1} ΞΉ] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] (p : SeminormFamily.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3), Iff (WithSeminorms.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 t p _inst_4) (Eq.{succ u2} (Filter.{u2} E) (nhds.{u2} E _inst_4 (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2)))))))) (iInf.{u2, succ u1} (Filter.{u2} E) (ConditionallyCompleteLattice.toInfSet.{u2} (Filter.{u2} E) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} E) (Filter.instCompleteLatticeFilter.{u2} E))) ΞΉ (fun (i : ΞΉ) => Filter.comap.{u2, 0} E Real (FunLike.coe.{succ u2, succ u2, 1} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) E (fun (_x : E) => (fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) _x) (SubadditiveHomClass.toFunLike.{u2, u2, 0} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) E Real (AddZeroClass.toAdd.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real (AddCommMonoid.toAddMonoid.{0} Real (OrderedAddCommMonoid.toAddCommMonoid.{0} Real Real.orderedAddCommMonoid)))) (Preorder.toLE.{0} Real (PartialOrder.toPreorder.{0} Real (OrderedAddCommMonoid.toPartialOrder.{0} Real Real.orderedAddCommMonoid))) (AddGroupSeminormClass.toAddLEAddHomClass.{u2, u2, 0} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) E Real (AddCommGroup.toAddGroup.{u2} E _inst_2) Real.orderedAddCommMonoid (SeminormClass.toAddGroupSeminormClass.{u2, u3, u2} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (Seminorm.instSeminormClass.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))))))) (p i)) (nhds.{0} Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))))))
+Case conversion may be inaccurate. Consider using '#align seminorm_family.with_seminorms_iff_nhds_eq_infi SeminormFamily.withSeminorms_iff_nhds_eq_iInfβ'. -/
theorem SeminormFamily.withSeminorms_iff_nhds_eq_iInf (p : SeminormFamily π E ΞΉ) :
WithSeminorms p β (π 0 : Filter E) = β¨
i, (π 0).comap (p i) :=
by
@@ -456,6 +650,12 @@ theorem SeminormFamily.withSeminorms_iff_nhds_eq_iInf (p : SeminormFamily π E
exact AddGroupFilterBasis.nhds_zero_eq _
#align seminorm_family.with_seminorms_iff_nhds_eq_infi SeminormFamily.withSeminorms_iff_nhds_eq_iInf
+/- warning: with_seminorms.continuous_seminorm -> WithSeminorms.continuous_seminorm is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_2 : AddCommGroup.{u2} E] [t : TopologicalSpace.{u2} E] [_inst_4 : TopologicalAddGroup.{u2} E t (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_5 : Nonempty.{succ u3} ΞΉ] [_inst_6 : NontriviallyNormedField.{u1} π] [_inst_7 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_6))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_8 : ContinuousConstSMul.{u1, u2} π E t (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_6))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_6)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_6))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_7))))] {p : SeminormFamily.{u1, u2, u3} π E ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_6) _inst_2 _inst_7}, (WithSeminorms.{u1, u2, u3} π E ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_6) _inst_2 _inst_7 _inst_5 p t) -> (forall (i : ΞΉ), Continuous.{u2, 0} E Real t (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (coeFn.{succ u2, succ u2} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_6)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_6))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_6)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_6))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_7))))) (fun (_x : Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_6)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_6))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_6)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_6))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_7))))) => E -> Real) (Seminorm.hasCoeToFun.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_6)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_6))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_6)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_6))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_7))))) (p i)))
+but is expected to have type
+ forall {π : Type.{u3}} {E : Type.{u2}} {ΞΉ : Type.{u1}} [_inst_2 : AddCommGroup.{u2} E] [t : Nonempty.{succ u1} ΞΉ] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : NontriviallyNormedField.{u3} π] [_inst_7 : Module.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_8 : ContinuousConstSMul.{u3, u2} π E _inst_4 (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_7))))] {p : SeminormFamily.{u3, u2, u1} π E ΞΉ (NontriviallyNormedField.toNormedField.{u3} π _inst_6) _inst_2 _inst_7}, (WithSeminorms.{u3, u2, u1} π E ΞΉ (NontriviallyNormedField.toNormedField.{u3} π _inst_6) _inst_2 _inst_7 t p _inst_4) -> (forall (i : ΞΉ), Continuous.{u2, 0} E Real _inst_4 (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (FunLike.coe.{succ u2, succ u2, 1} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_7))))) E (fun (_x : E) => (fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) _x) (SubadditiveHomClass.toFunLike.{u2, u2, 0} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_7))))) E Real (AddZeroClass.toAdd.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real (AddCommMonoid.toAddMonoid.{0} Real (OrderedAddCommMonoid.toAddCommMonoid.{0} Real Real.orderedAddCommMonoid)))) (Preorder.toLE.{0} Real (PartialOrder.toPreorder.{0} Real (OrderedAddCommMonoid.toPartialOrder.{0} Real Real.orderedAddCommMonoid))) (AddGroupSeminormClass.toAddLEAddHomClass.{u2, u2, 0} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_7))))) E Real (AddCommGroup.toAddGroup.{u2} E _inst_2) Real.orderedAddCommMonoid (SeminormClass.toAddGroupSeminormClass.{u2, u3, u2} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_7))))) π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_7)))) (Seminorm.instSeminormClass.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_6))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_7)))))))) (p i)))
+Case conversion may be inaccurate. Consider using '#align with_seminorms.continuous_seminorm WithSeminorms.continuous_seminormβ'. -/
theorem WithSeminorms.continuous_seminorm [NontriviallyNormedField π] [Module π E]
[ContinuousConstSMul π E] {p : SeminormFamily π E ΞΉ} (hp : WithSeminorms p) (i : ΞΉ) :
Continuous (p i) := by
@@ -464,6 +664,12 @@ theorem WithSeminorms.continuous_seminorm [NontriviallyNormedField π] [Module
exact Filter.mem_iInf_of_mem i (Filter.preimage_mem_comap <| Metric.ball_mem_nhds _ one_pos)
#align with_seminorms.continuous_seminorm WithSeminorms.continuous_seminorm
+/- warning: seminorm_family.with_seminorms_iff_topological_space_eq_infi -> SeminormFamily.withSeminorms_iff_topologicalSpace_eq_iInf is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [t : TopologicalSpace.{u2} E] [_inst_4 : TopologicalAddGroup.{u2} E t (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_5 : Nonempty.{succ u3} ΞΉ] (p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3), Iff (WithSeminorms.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_5 p t) (Eq.{succ u2} (TopologicalSpace.{u2} E) t (iInf.{u2, succ u3} (TopologicalSpace.{u2} E) (ConditionallyCompleteLattice.toHasInf.{u2} (TopologicalSpace.{u2} E) (CompleteLattice.toConditionallyCompleteLattice.{u2} (TopologicalSpace.{u2} E) (TopologicalSpace.completeLattice.{u2} E))) ΞΉ (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (AddGroupSeminorm.toSeminormedAddCommGroup.{u2} E _inst_2 (Seminorm.toAddGroupSeminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (p i))))))))
+but is expected to have type
+ forall {π : Type.{u3}} {E : Type.{u2}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u3} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [t : Nonempty.{succ u1} ΞΉ] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] (p : SeminormFamily.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3), Iff (WithSeminorms.{u3, u2, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 t p _inst_4) (Eq.{succ u2} (TopologicalSpace.{u2} E) _inst_4 (iInf.{u2, succ u1} (TopologicalSpace.{u2} E) (ConditionallyCompleteLattice.toInfSet.{u2} (TopologicalSpace.{u2} E) (CompleteLattice.toConditionallyCompleteLattice.{u2} (TopologicalSpace.{u2} E) (TopologicalSpace.instCompleteLatticeTopologicalSpace.{u2} E))) ΞΉ (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (AddGroupSeminorm.toSeminormedAddCommGroup.{u2} E _inst_2 (Seminorm.toAddGroupSeminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (p i))))))))
+Case conversion may be inaccurate. Consider using '#align seminorm_family.with_seminorms_iff_topological_space_eq_infi SeminormFamily.withSeminorms_iff_topologicalSpace_eq_iInfβ'. -/
/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `congrm #[[expr Β«expr = Β»(_, Β«exprβ¨
, Β»((i), _))]] -/
/-- The topology induced by a family of seminorms is exactly the infimum of the ones induced by
each seminorm individually. We express this as a characterization of `with_seminorms p`. -/
@@ -483,6 +689,12 @@ theorem SeminormFamily.withSeminorms_iff_topologicalSpace_eq_iInf (p : SeminormF
omit t
+/- warning: seminorm_family.with_seminorms_iff_uniform_space_eq_infi -> SeminormFamily.withSeminorms_iff_uniformSpace_eq_iInf is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_5 : Nonempty.{succ u3} ΞΉ] [u : UniformSpace.{u2} E] [_inst_6 : UniformAddGroup.{u2} E u (AddCommGroup.toAddGroup.{u2} E _inst_2)] (p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3), Iff (WithSeminorms.{u1, u2, u3} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_5 p (UniformSpace.toTopologicalSpace.{u2} E u)) (Eq.{succ u2} (UniformSpace.{u2} E) u (iInf.{u2, succ u3} (UniformSpace.{u2} E) (UniformSpace.hasInf.{u2} E) ΞΉ (fun (i : ΞΉ) => PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (AddGroupSeminorm.toSeminormedAddCommGroup.{u2} E _inst_2 (Seminorm.toAddGroupSeminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (p i)))))))
+but is expected to have type
+ forall {π : Type.{u2}} {E : Type.{u3}} {ΞΉ : Type.{u1}} [_inst_1 : NormedField.{u2} π] [_inst_2 : AddCommGroup.{u3} E] [_inst_3 : Module.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] [_inst_5 : Nonempty.{succ u1} ΞΉ] [u : UniformSpace.{u3} E] [_inst_6 : UniformAddGroup.{u3} E u (AddCommGroup.toAddGroup.{u3} E _inst_2)] (p : SeminormFamily.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3), Iff (WithSeminorms.{u2, u3, u1} π E ΞΉ _inst_1 _inst_2 _inst_3 _inst_5 p (UniformSpace.toTopologicalSpace.{u3} E u)) (Eq.{succ u3} (UniformSpace.{u3} E) u (iInf.{u3, succ u1} (UniformSpace.{u3} E) (instInfSetUniformSpace.{u3} E) ΞΉ (fun (i : ΞΉ) => PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (AddGroupSeminorm.toSeminormedAddCommGroup.{u3} E _inst_2 (Seminorm.toAddGroupSeminorm.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3)))) (p i)))))))
+Case conversion may be inaccurate. Consider using '#align seminorm_family.with_seminorms_iff_uniform_space_eq_infi SeminormFamily.withSeminorms_iff_uniformSpace_eq_iInfβ'. -/
/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `congrm #[[expr Β«expr = Β»(_, Β«exprβ¨
, Β»((i), _))]] -/
/-- The uniform structure induced by a family of seminorms is exactly the infimum of the ones
induced by each seminorm individually. We express this as a characterization of
@@ -504,6 +716,12 @@ end TopologicalAddGroup
section NormedSpace
+/- warning: norm_with_seminorms -> norm_withSeminorms is a dubious translation:
+lean 3 declaration is
+ forall (π : Type.{u1}) (E : Type.{u2}) [_inst_1 : NormedField.{u1} π] [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E _inst_1 _inst_2], WithSeminorms.{u1, u2, 0} π E (Fin (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) _inst_1 (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2) (NormedSpace.toModule.{u1, u2} π E _inst_1 _inst_2 _inst_3) (instNonempty.{1} (Fin (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (Fin.inhabited (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))))) (fun (_x : Fin (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) => normSeminorm.{u1, u2} π E _inst_1 _inst_2 _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2)))
+but is expected to have type
+ forall (π : Type.{u2}) (E : Type.{u1}) [_inst_1 : NormedField.{u2} π] [_inst_2 : SeminormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π E _inst_1 _inst_2], WithSeminorms.{u2, u1, 0} π E (Fin (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) _inst_1 (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2) (NormedSpace.toModule.{u2, u1} π E _inst_1 _inst_2 _inst_3) (instNonempty.{1} (Fin (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (instInhabitedFinSucc (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)))) (fun (_x : Fin (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) => normSeminorm.{u2, u1} π E _inst_1 _inst_2 _inst_3) (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2)))
+Case conversion may be inaccurate. Consider using '#align norm_with_seminorms norm_withSeminormsβ'. -/
/-- The topology of a `normed_space π E` is induced by the seminorm `norm_seminorm π E`. -/
theorem norm_withSeminorms (π E) [NormedField π] [SeminormedAddCommGroup E] [NormedSpace π E] :
WithSeminorms fun _ : Fin 1 => normSeminorm π E :=
@@ -537,6 +755,12 @@ variable {p : SeminormFamily π E ΞΉ}
variable [TopologicalSpace E]
+/- warning: with_seminorms.is_vonN_bounded_iff_finset_seminorm_bounded -> WithSeminorms.isVonNBounded_iff_finset_seminorm_bounded is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u3} ΞΉ] {p : SeminormFamily.{u1, u2, u3} π E ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2 _inst_3} [_inst_5 : TopologicalSpace.{u2} E] {s : Set.{u2} E}, (WithSeminorms.{u1, u2, u3} π E ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2 _inst_3 _inst_4 p _inst_5) -> (Iff (Bornology.IsVonNBounded.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) _inst_5 s) (forall (I : Finset.{u3} ΞΉ), Exists.{1} Real (fun (r : Real) => Exists.{0} (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) (fun (hr : LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) => forall (x : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x s) -> (LT.lt.{0} Real Real.hasLt (coeFn.{succ u2, succ u2} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (fun (_x : Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) => E -> Real) (Seminorm.hasCoeToFun.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (Finset.sup.{u2, u3} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) ΞΉ (Seminorm.semilatticeSup.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (Seminorm.orderBot.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) _inst_2 _inst_3) I p) x) r)))))
+but is expected to have type
+ forall {π : Type.{u2}} {E : Type.{u3}} {ΞΉ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u2} π] [_inst_2 : AddCommGroup.{u3} E] [_inst_3 : Module.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] [_inst_4 : Nonempty.{succ u1} ΞΉ] {p : SeminormFamily.{u2, u3, u1} π E ΞΉ (NontriviallyNormedField.toNormedField.{u2} π _inst_1) _inst_2 _inst_3} [_inst_5 : TopologicalSpace.{u3} E] {s : Set.{u3} E}, (WithSeminorms.{u2, u3, u1} π E ΞΉ (NontriviallyNormedField.toNormedField.{u2} π _inst_1) _inst_2 _inst_3 _inst_4 p _inst_5) -> (Iff (Bornology.IsVonNBounded.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3)))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) _inst_5 s) (forall (I : Finset.{u1} ΞΉ), Exists.{1} Real (fun (r : Real) => And (GT.gt.{0} Real Real.instLTReal r (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))) (forall (x : E), (Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) x s) -> (LT.lt.{0} ((fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) x) Real.instLTReal (FunLike.coe.{succ u3, succ u3, 1} (Seminorm.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) E (fun (a : E) => (fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) a) (SubadditiveHomClass.toFunLike.{u3, u3, 0} (Seminorm.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) E Real (AddZeroClass.toAdd.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_2))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real (AddCommMonoid.toAddMonoid.{0} Real (OrderedAddCommMonoid.toAddCommMonoid.{0} Real Real.orderedAddCommMonoid)))) (Preorder.toLE.{0} Real (PartialOrder.toPreorder.{0} Real (OrderedAddCommMonoid.toPartialOrder.{0} Real Real.orderedAddCommMonoid))) (AddGroupSeminormClass.toAddLEAddHomClass.{u3, u3, 0} (Seminorm.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) E Real (AddCommGroup.toAddGroup.{u3} E _inst_2) Real.orderedAddCommMonoid (SeminormClass.toAddGroupSeminormClass.{u3, u2, u3} (Seminorm.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3)))) (Seminorm.instSeminormClass.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3)))))))) (Finset.sup.{u3, u1} (Seminorm.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) ΞΉ (Seminorm.instSemilatticeSup.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) (Seminorm.instOrderBot.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))) _inst_2 _inst_3) I p) x) r)))))
+Case conversion may be inaccurate. Consider using '#align with_seminorms.is_vonN_bounded_iff_finset_seminorm_bounded WithSeminorms.isVonNBounded_iff_finset_seminorm_boundedβ'. -/
theorem WithSeminorms.isVonNBounded_iff_finset_seminorm_bounded {s : Set E} (hp : WithSeminorms p) :
Bornology.IsVonNBounded π s β β I : Finset ΞΉ, β (r : _)(hr : 0 < r), β x β s, I.sup p x < r :=
by
@@ -562,6 +786,12 @@ theorem WithSeminorms.isVonNBounded_iff_finset_seminorm_bounded {s : Set E} (hp
exact (Finset.sup I p).ball_zero_absorbs_ball_zero hr
#align with_seminorms.is_vonN_bounded_iff_finset_seminorm_bounded WithSeminorms.isVonNBounded_iff_finset_seminorm_bounded
+/- warning: with_seminorms.image_is_vonN_bounded_iff_finset_seminorm_bounded -> WithSeminorms.image_isVonNBounded_iff_finset_seminorm_bounded is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} {G : Type.{u3}} {ΞΉ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u4} ΞΉ] {p : SeminormFamily.{u1, u2, u4} π E ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2 _inst_3} [_inst_5 : TopologicalSpace.{u2} E] (f : G -> E) {s : Set.{u3} G}, (WithSeminorms.{u1, u2, u4} π E ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2 _inst_3 _inst_4 p _inst_5) -> (Iff (Bornology.IsVonNBounded.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) _inst_5 (Set.image.{u3, u2} G E f s)) (forall (I : Finset.{u4} ΞΉ), Exists.{1} Real (fun (r : Real) => Exists.{0} (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) (fun (hr : LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) => forall (x : G), (Membership.Mem.{u3, u3} G (Set.{u3} G) (Set.hasMem.{u3} G) x s) -> (LT.lt.{0} Real Real.hasLt (coeFn.{succ u2, succ u2} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (fun (_x : Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) => E -> Real) (Seminorm.hasCoeToFun.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (Finset.sup.{u2, u4} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) ΞΉ (Seminorm.semilatticeSup.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (Seminorm.orderBot.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) _inst_2 _inst_3) I p) (f x)) r)))))
+but is expected to have type
+ forall {π : Type.{u3}} {E : Type.{u2}} {G : Type.{u4}} {ΞΉ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u3} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u1} ΞΉ] {p : SeminormFamily.{u3, u2, u1} π E ΞΉ (NontriviallyNormedField.toNormedField.{u3} π _inst_1) _inst_2 _inst_3} [_inst_5 : TopologicalSpace.{u2} E] (f : G -> E) {s : Set.{u4} G}, (WithSeminorms.{u3, u2, u1} π E ΞΉ (NontriviallyNormedField.toNormedField.{u3} π _inst_1) _inst_2 _inst_3 _inst_4 p _inst_5) -> (Iff (Bornology.IsVonNBounded.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) _inst_5 (Set.image.{u4, u2} G E f s)) (forall (I : Finset.{u1} ΞΉ), Exists.{1} Real (fun (r : Real) => And (GT.gt.{0} Real Real.instLTReal r (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))) (forall (x : G), (Membership.mem.{u4, u4} G (Set.{u4} G) (Set.instMembershipSet.{u4} G) x s) -> (LT.lt.{0} ((fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) (f x)) Real.instLTReal (FunLike.coe.{succ u2, succ u2, 1} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) E (fun (a : E) => (fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) a) (SubadditiveHomClass.toFunLike.{u2, u2, 0} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) E Real (AddZeroClass.toAdd.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real (AddCommMonoid.toAddMonoid.{0} Real (OrderedAddCommMonoid.toAddCommMonoid.{0} Real Real.orderedAddCommMonoid)))) (Preorder.toLE.{0} Real (PartialOrder.toPreorder.{0} Real (OrderedAddCommMonoid.toPartialOrder.{0} Real Real.orderedAddCommMonoid))) (AddGroupSeminormClass.toAddLEAddHomClass.{u2, u2, 0} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) E Real (AddCommGroup.toAddGroup.{u2} E _inst_2) Real.orderedAddCommMonoid (SeminormClass.toAddGroupSeminormClass.{u2, u3, u2} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (Seminorm.instSeminormClass.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))))))) (Finset.sup.{u2, u1} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) ΞΉ (Seminorm.instSemilatticeSup.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (Seminorm.instOrderBot.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))) _inst_2 _inst_3) I p) (f x)) r)))))
+Case conversion may be inaccurate. Consider using '#align with_seminorms.image_is_vonN_bounded_iff_finset_seminorm_bounded WithSeminorms.image_isVonNBounded_iff_finset_seminorm_boundedβ'. -/
theorem WithSeminorms.image_isVonNBounded_iff_finset_seminorm_bounded (f : G β E) {s : Set G}
(hp : WithSeminorms p) :
Bornology.IsVonNBounded π (f '' s) β
@@ -569,6 +799,12 @@ theorem WithSeminorms.image_isVonNBounded_iff_finset_seminorm_bounded (f : G β
by simp_rw [hp.is_vonN_bounded_iff_finset_seminorm_bounded, Set.ball_image_iff]
#align with_seminorms.image_is_vonN_bounded_iff_finset_seminorm_bounded WithSeminorms.image_isVonNBounded_iff_finset_seminorm_bounded
+/- warning: with_seminorms.is_vonN_bounded_iff_seminorm_bounded -> WithSeminorms.isVonNBounded_iff_seminorm_bounded is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u3} ΞΉ] {p : SeminormFamily.{u1, u2, u3} π E ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2 _inst_3} [_inst_5 : TopologicalSpace.{u2} E] {s : Set.{u2} E}, (WithSeminorms.{u1, u2, u3} π E ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2 _inst_3 _inst_4 p _inst_5) -> (Iff (Bornology.IsVonNBounded.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) _inst_5 s) (forall (i : ΞΉ), Exists.{1} Real (fun (r : Real) => Exists.{0} (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) (fun (hr : LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) => forall (x : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x s) -> (LT.lt.{0} Real Real.hasLt (coeFn.{succ u2, succ u2} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (fun (_x : Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) => E -> Real) (Seminorm.hasCoeToFun.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (p i) x) r)))))
+but is expected to have type
+ forall {π : Type.{u2}} {E : Type.{u3}} {ΞΉ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u2} π] [_inst_2 : AddCommGroup.{u3} E] [_inst_3 : Module.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] [_inst_4 : Nonempty.{succ u1} ΞΉ] {p : SeminormFamily.{u2, u3, u1} π E ΞΉ (NontriviallyNormedField.toNormedField.{u2} π _inst_1) _inst_2 _inst_3} [_inst_5 : TopologicalSpace.{u3} E] {s : Set.{u3} E}, (WithSeminorms.{u2, u3, u1} π E ΞΉ (NontriviallyNormedField.toNormedField.{u2} π _inst_1) _inst_2 _inst_3 _inst_4 p _inst_5) -> (Iff (Bornology.IsVonNBounded.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3)))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) _inst_5 s) (forall (i : ΞΉ), Exists.{1} Real (fun (r : Real) => And (GT.gt.{0} Real Real.instLTReal r (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))) (forall (x : E), (Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) x s) -> (LT.lt.{0} ((fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) x) Real.instLTReal (FunLike.coe.{succ u3, succ u3, 1} (Seminorm.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) E (fun (a : E) => (fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) a) (SubadditiveHomClass.toFunLike.{u3, u3, 0} (Seminorm.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) E Real (AddZeroClass.toAdd.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_2))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real (AddCommMonoid.toAddMonoid.{0} Real (OrderedAddCommMonoid.toAddCommMonoid.{0} Real Real.orderedAddCommMonoid)))) (Preorder.toLE.{0} Real (PartialOrder.toPreorder.{0} Real (OrderedAddCommMonoid.toPartialOrder.{0} Real Real.orderedAddCommMonoid))) (AddGroupSeminormClass.toAddLEAddHomClass.{u3, u3, 0} (Seminorm.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) E Real (AddCommGroup.toAddGroup.{u3} E _inst_2) Real.orderedAddCommMonoid (SeminormClass.toAddGroupSeminormClass.{u3, u2, u3} (Seminorm.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3)))) (Seminorm.instSeminormClass.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3)))))))) (p i) x) r)))))
+Case conversion may be inaccurate. Consider using '#align with_seminorms.is_vonN_bounded_iff_seminorm_bounded WithSeminorms.isVonNBounded_iff_seminorm_boundedβ'. -/
theorem WithSeminorms.isVonNBounded_iff_seminorm_bounded {s : Set E} (hp : WithSeminorms p) :
Bornology.IsVonNBounded π s β β i : ΞΉ, β (r : _)(hr : 0 < r), β x β s, p i x < r :=
by
@@ -592,6 +828,12 @@ theorem WithSeminorms.isVonNBounded_iff_seminorm_bounded {s : Set E} (hp : WithS
exact β¨1, zero_lt_one, fun _ _ => zero_lt_oneβ©
#align with_seminorms.is_vonN_bounded_iff_seminorm_bounded WithSeminorms.isVonNBounded_iff_seminorm_bounded
+/- warning: with_seminorms.image_is_vonN_bounded_iff_seminorm_bounded -> WithSeminorms.image_isVonNBounded_iff_seminorm_bounded is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} {G : Type.{u3}} {ΞΉ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u4} ΞΉ] {p : SeminormFamily.{u1, u2, u4} π E ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2 _inst_3} [_inst_5 : TopologicalSpace.{u2} E] (f : G -> E) {s : Set.{u3} G}, (WithSeminorms.{u1, u2, u4} π E ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2 _inst_3 _inst_4 p _inst_5) -> (Iff (Bornology.IsVonNBounded.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) _inst_5 (Set.image.{u3, u2} G E f s)) (forall (i : ΞΉ), Exists.{1} Real (fun (r : Real) => Exists.{0} (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) (fun (hr : LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) => forall (x : G), (Membership.Mem.{u3, u3} G (Set.{u3} G) (Set.hasMem.{u3} G) x s) -> (LT.lt.{0} Real Real.hasLt (coeFn.{succ u2, succ u2} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (fun (_x : Seminorm.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) => E -> Real) (Seminorm.hasCoeToFun.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) (p i) (f x)) r)))))
+but is expected to have type
+ forall {π : Type.{u3}} {E : Type.{u2}} {G : Type.{u4}} {ΞΉ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u3} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u1} ΞΉ] {p : SeminormFamily.{u3, u2, u1} π E ΞΉ (NontriviallyNormedField.toNormedField.{u3} π _inst_1) _inst_2 _inst_3} [_inst_5 : TopologicalSpace.{u2} E] (f : G -> E) {s : Set.{u4} G}, (WithSeminorms.{u3, u2, u1} π E ΞΉ (NontriviallyNormedField.toNormedField.{u3} π _inst_1) _inst_2 _inst_3 _inst_4 p _inst_5) -> (Iff (Bornology.IsVonNBounded.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) _inst_5 (Set.image.{u4, u2} G E f s)) (forall (i : ΞΉ), Exists.{1} Real (fun (r : Real) => And (GT.gt.{0} Real Real.instLTReal r (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))) (forall (x : G), (Membership.mem.{u4, u4} G (Set.{u4} G) (Set.instMembershipSet.{u4} G) x s) -> (LT.lt.{0} ((fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) (f x)) Real.instLTReal (FunLike.coe.{succ u2, succ u2, 1} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) E (fun (a : E) => (fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) a) (SubadditiveHomClass.toFunLike.{u2, u2, 0} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) E Real (AddZeroClass.toAdd.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real (AddCommMonoid.toAddMonoid.{0} Real (OrderedAddCommMonoid.toAddCommMonoid.{0} Real Real.orderedAddCommMonoid)))) (Preorder.toLE.{0} Real (PartialOrder.toPreorder.{0} Real (OrderedAddCommMonoid.toPartialOrder.{0} Real Real.orderedAddCommMonoid))) (AddGroupSeminormClass.toAddLEAddHomClass.{u2, u2, 0} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) E Real (AddCommGroup.toAddGroup.{u2} E _inst_2) Real.orderedAddCommMonoid (SeminormClass.toAddGroupSeminormClass.{u2, u3, u2} (Seminorm.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (Seminorm.instSeminormClass.{u3, u2} π E (SeminormedCommRing.toSeminormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))))))) (p i) (f x)) r)))))
+Case conversion may be inaccurate. Consider using '#align with_seminorms.image_is_vonN_bounded_iff_seminorm_bounded WithSeminorms.image_isVonNBounded_iff_seminorm_boundedβ'. -/
theorem WithSeminorms.image_isVonNBounded_iff_seminorm_bounded (f : G β E) {s : Set G}
(hp : WithSeminorms p) :
Bornology.IsVonNBounded π (f '' s) β β i : ΞΉ, β (r : _)(hr : 0 < r), β x β s, p i (f x) < r :=
@@ -618,6 +860,12 @@ variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [Nonempty ΞΉ] [Nonempty ΞΉ']
+/- warning: seminorm.continuous_of_continuous_comp -> Seminorm.continuous_of_continuous_comp is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {πβ : Type.{u2}} {E : Type.{u3}} {F : Type.{u4}} {ΞΉ' : Type.{u5}} [_inst_2 : AddCommGroup.{u3} E] [_inst_4 : NormedField.{u1} π] [_inst_5 : Module.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] [_inst_7 : AddCommGroup.{u4} F] [_inst_9 : NormedField.{u2} πβ] [_inst_10 : Module.{u2, u4} πβ F (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] {Οββ : RingHom.{u1, u2} π πβ (NonAssocRing.toNonAssocSemiring.{u1} π (Ring.toNonAssocRing.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (NonAssocRing.toNonAssocSemiring.{u2} πβ (Ring.toNonAssocRing.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))))} [_inst_12 : RingHomIsometric.{u1, u2} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))) (NormedField.toHasNorm.{u1} π _inst_4) (NormedField.toHasNorm.{u2} πβ _inst_9) Οββ] [_inst_14 : Nonempty.{succ u5} ΞΉ'] {q : SeminormFamily.{u2, u4, u5} πβ F ΞΉ' _inst_9 _inst_7 _inst_10} [_inst_15 : TopologicalSpace.{u3} E] [_inst_16 : TopologicalAddGroup.{u3} E _inst_15 (AddCommGroup.toAddGroup.{u3} E _inst_2)] [_inst_17 : TopologicalSpace.{u4} F] [_inst_18 : TopologicalAddGroup.{u4} F _inst_17 (AddCommGroup.toAddGroup.{u4} F _inst_7)], (WithSeminorms.{u2, u4, u5} πβ F ΞΉ' _inst_9 _inst_7 _inst_10 _inst_14 q _inst_17) -> (forall (f : LinearMap.{u1, u2, u3, u4} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_5 _inst_10), (forall (i : ΞΉ'), Continuous.{u3, 0} E Real _inst_15 (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (coeFn.{succ u3, succ u3} (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_5))))) (fun (_x : Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_5))))) => E -> Real) (Seminorm.hasCoeToFun.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_5))))) (Seminorm.comp.{u1, u2, u3, u4} π πβ E F (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (SeminormedCommRing.toSemiNormedRing.{u2} πβ (NormedCommRing.toSeminormedCommRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9))) Οββ _inst_12 _inst_2 _inst_7 _inst_5 _inst_10 (q i) f))) -> (Continuous.{u3, u4} E F _inst_15 _inst_17 (coeFn.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (LinearMap.{u1, u2, u3, u4} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_5 _inst_10) (fun (_x : LinearMap.{u1, u2, u3, u4} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_5 _inst_10) => E -> F) (LinearMap.hasCoeToFun.{u1, u2, u3, u4} π πβ E F (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_5 _inst_10 Οββ) f)))
+but is expected to have type
+ forall {π : Type.{u1}} {πβ : Type.{u5}} {E : Type.{u2}} {F : Type.{u4}} {ΞΉ' : Type.{u3}} [_inst_2 : AddCommGroup.{u2} E] [_inst_4 : NormedField.{u1} π] [_inst_5 : Module.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_7 : AddCommGroup.{u4} F] [_inst_9 : NormedField.{u5} πβ] [_inst_10 : Module.{u5, u4} πβ F (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ _inst_9)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] {Οββ : RingHom.{u1, u5} π πβ (Semiring.toNonAssocSemiring.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_4))))) (Semiring.toNonAssocSemiring.{u5} πβ (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ _inst_9)))))} [_inst_12 : RingHomIsometric.{u1, u5} π πβ (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_4)))) (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ _inst_9)))) (NormedField.toNorm.{u1} π _inst_4) (NormedField.toNorm.{u5} πβ _inst_9) Οββ] [_inst_14 : Nonempty.{succ u3} ΞΉ'] {q : SeminormFamily.{u5, u4, u3} πβ F ΞΉ' _inst_9 _inst_7 _inst_10} [_inst_15 : TopologicalSpace.{u2} E] [_inst_16 : TopologicalAddGroup.{u2} E _inst_15 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_17 : TopologicalSpace.{u4} F] [_inst_18 : TopologicalAddGroup.{u4} F _inst_17 (AddCommGroup.toAddGroup.{u4} F _inst_7)], (WithSeminorms.{u5, u4, u3} πβ F ΞΉ' _inst_9 _inst_7 _inst_10 _inst_14 q _inst_17) -> (forall (f : LinearMap.{u1, u5, u2, u4} π πβ (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_4)))) (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ _inst_9)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_5 _inst_10), (forall (i : ΞΉ'), Continuous.{u2, 0} E Real _inst_15 (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (FunLike.coe.{succ u2, succ u2, 1} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (MonoidWithZero.toZero.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))) E (fun (_x : E) => (fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) _x) (SubadditiveHomClass.toFunLike.{u2, u2, 0} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (MonoidWithZero.toZero.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))) E Real (AddZeroClass.toAdd.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real (AddCommMonoid.toAddMonoid.{0} Real (OrderedAddCommMonoid.toAddCommMonoid.{0} Real Real.orderedAddCommMonoid)))) (Preorder.toLE.{0} Real (PartialOrder.toPreorder.{0} Real (OrderedAddCommMonoid.toPartialOrder.{0} Real Real.orderedAddCommMonoid))) (AddGroupSeminormClass.toAddLEAddHomClass.{u2, u2, 0} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (MonoidWithZero.toZero.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))) E Real (AddCommGroup.toAddGroup.{u2} E _inst_2) Real.orderedAddCommMonoid (SeminormClass.toAddGroupSeminormClass.{u2, u1, u2} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (MonoidWithZero.toZero.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))) π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (MonoidWithZero.toZero.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5)))) (Seminorm.instSeminormClass.{u1, u2} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (MonoidWithZero.toZero.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5)))))))) (Seminorm.comp.{u1, u5, u2, u4} π πβ E F (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (SeminormedCommRing.toSeminormedRing.{u5} πβ (NormedCommRing.toSeminormedCommRing.{u5} πβ (NormedField.toNormedCommRing.{u5} πβ _inst_9))) Οββ _inst_12 _inst_2 _inst_7 _inst_5 _inst_10 (q i) f))) -> (Continuous.{u2, u4} E F _inst_15 _inst_17 (FunLike.coe.{max (succ u2) (succ u4), succ u2, succ u4} (LinearMap.{u1, u5, u2, u4} π πβ (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_4)))) (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ _inst_9)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_5 _inst_10) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => F) _x) (LinearMap.instFunLikeLinearMap.{u1, u5, u2, u4} π πβ E F (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_4)))) (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ _inst_9)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_5 _inst_10 Οββ) f)))
+Case conversion may be inaccurate. Consider using '#align seminorm.continuous_of_continuous_comp Seminorm.continuous_of_continuous_compβ'. -/
theorem continuous_of_continuous_comp {q : SeminormFamily πβ F ΞΉ'} [TopologicalSpace E]
[TopologicalAddGroup E] [TopologicalSpace F] [TopologicalAddGroup F] (hq : WithSeminorms q)
(f : E βββ[Οββ] F) (hf : β i, Continuous ((q i).comp f)) : Continuous f :=
@@ -630,12 +878,24 @@ theorem continuous_of_continuous_comp {q : SeminormFamily πβ F ΞΉ'} [Topolo
exact (map_zero _).symm
#align seminorm.continuous_of_continuous_comp Seminorm.continuous_of_continuous_comp
+/- warning: seminorm.continuous_iff_continuous_comp -> Seminorm.continuous_iff_continuous_comp is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {πβ : Type.{u2}} {E : Type.{u3}} {F : Type.{u4}} {ΞΉ' : Type.{u5}} [_inst_1 : NontriviallyNormedField.{u1} π] [_inst_2 : AddCommGroup.{u3} E] [_inst_3 : Module.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] [_inst_6 : NontriviallyNormedField.{u2} πβ] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u2, u4} πβ F (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_6))))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] {Οββ : RingHom.{u1, u2} π πβ (NonAssocRing.toNonAssocSemiring.{u1} π (Ring.toNonAssocRing.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NonAssocRing.toNonAssocSemiring.{u2} πβ (Ring.toNonAssocRing.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_6))))))} [_inst_11 : RingHomIsometric.{u1, u2} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_6))))) (NormedField.toHasNorm.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)) (NormedField.toHasNorm.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_6)) Οββ] [_inst_14 : Nonempty.{succ u5} ΞΉ'] {q : SeminormFamily.{u2, u4, u5} πβ F ΞΉ' (NontriviallyNormedField.toNormedField.{u2} πβ _inst_6) _inst_7 _inst_8} [_inst_15 : TopologicalSpace.{u3} E] [_inst_16 : TopologicalAddGroup.{u3} E _inst_15 (AddCommGroup.toAddGroup.{u3} E _inst_2)] [_inst_17 : TopologicalSpace.{u4} F] [_inst_18 : TopologicalAddGroup.{u4} F _inst_17 (AddCommGroup.toAddGroup.{u4} F _inst_7)] [_inst_19 : ContinuousConstSMul.{u2, u4} πβ F _inst_17 (SMulZeroClass.toHasSmul.{u2, u4} πβ F (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)))) (SMulWithZero.toSmulZeroClass.{u2, u4} πβ F (MulZeroClass.toHasZero.{u2} πβ (MulZeroOneClass.toMulZeroClass.{u2} πβ (MonoidWithZero.toMulZeroOneClass.{u2} πβ (Semiring.toMonoidWithZero.{u2} πβ (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_6))))))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)))) (MulActionWithZero.toSMulWithZero.{u2, u4} πβ F (Semiring.toMonoidWithZero.{u2} πβ (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_6)))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)))) (Module.toMulActionWithZero.{u2, u4} πβ F (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_6))))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_8))))], (WithSeminorms.{u2, u4, u5} πβ F ΞΉ' (NontriviallyNormedField.toNormedField.{u2} πβ _inst_6) _inst_7 _inst_8 _inst_14 q _inst_17) -> (forall (f : LinearMap.{u1, u2, u3, u4} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_6))))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_3 _inst_8), Iff (Continuous.{u3, u4} E F _inst_15 _inst_17 (coeFn.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (LinearMap.{u1, u2, u3, u4} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_6))))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_3 _inst_8) (fun (_x : LinearMap.{u1, u2, u3, u4} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_6))))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_3 _inst_8) => E -> F) (LinearMap.hasCoeToFun.{u1, u2, u3, u4} π πβ E F (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_6))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_3 _inst_8 Οββ) f)) (forall (i : ΞΉ'), Continuous.{u3, 0} E Real _inst_15 (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (coeFn.{succ u3, succ u3} (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) (fun (_x : Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) => E -> Real) (Seminorm.hasCoeToFun.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) (Seminorm.comp.{u1, u2, u3, u4} π πβ E F (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (SeminormedCommRing.toSemiNormedRing.{u2} πβ (NormedCommRing.toSeminormedCommRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_6)))) Οββ _inst_11 _inst_2 _inst_7 _inst_3 _inst_8 (q i) f))))
+but is expected to have type
+ forall {π : Type.{u1}} {πβ : Type.{u5}} {E : Type.{u2}} {F : Type.{u4}} {ΞΉ' : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_6 : NontriviallyNormedField.{u5} πβ] [_inst_7 : AddCommGroup.{u4} F] [_inst_8 : Module.{u5, u4} πβ F (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ (NontriviallyNormedField.toNormedField.{u5} πβ _inst_6))))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] {Οββ : RingHom.{u1, u5} π πβ (Semiring.toNonAssocSemiring.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (Semiring.toNonAssocSemiring.{u5} πβ (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ (NontriviallyNormedField.toNormedField.{u5} πβ _inst_6))))))} [_inst_11 : RingHomIsometric.{u1, u5} π πβ (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ (NontriviallyNormedField.toNormedField.{u5} πβ _inst_6))))) (NormedField.toNorm.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)) (NormedField.toNorm.{u5} πβ (NontriviallyNormedField.toNormedField.{u5} πβ _inst_6)) Οββ] [_inst_14 : Nonempty.{succ u3} ΞΉ'] {q : SeminormFamily.{u5, u4, u3} πβ F ΞΉ' (NontriviallyNormedField.toNormedField.{u5} πβ _inst_6) _inst_7 _inst_8} [_inst_15 : TopologicalSpace.{u2} E] [_inst_16 : TopologicalAddGroup.{u2} E _inst_15 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_17 : TopologicalSpace.{u4} F] [_inst_18 : TopologicalAddGroup.{u4} F _inst_17 (AddCommGroup.toAddGroup.{u4} F _inst_7)] [_inst_19 : ContinuousConstSMul.{u5, u4} πβ F _inst_17 (SMulZeroClass.toSMul.{u5, u4} πβ F (NegZeroClass.toZero.{u4} F (SubNegZeroMonoid.toNegZeroClass.{u4} F (SubtractionMonoid.toSubNegZeroMonoid.{u4} F (SubtractionCommMonoid.toSubtractionMonoid.{u4} F (AddCommGroup.toDivisionAddCommMonoid.{u4} F _inst_7))))) (SMulWithZero.toSMulZeroClass.{u5, u4} πβ F (CommMonoidWithZero.toZero.{u5} πβ (CommGroupWithZero.toCommMonoidWithZero.{u5} πβ (Semifield.toCommGroupWithZero.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ (NontriviallyNormedField.toNormedField.{u5} πβ _inst_6)))))) (NegZeroClass.toZero.{u4} F (SubNegZeroMonoid.toNegZeroClass.{u4} F (SubtractionMonoid.toSubNegZeroMonoid.{u4} F (SubtractionCommMonoid.toSubtractionMonoid.{u4} F (AddCommGroup.toDivisionAddCommMonoid.{u4} F _inst_7))))) (MulActionWithZero.toSMulWithZero.{u5, u4} πβ F (Semiring.toMonoidWithZero.{u5} πβ (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ (NontriviallyNormedField.toNormedField.{u5} πβ _inst_6)))))) (NegZeroClass.toZero.{u4} F (SubNegZeroMonoid.toNegZeroClass.{u4} F (SubtractionMonoid.toSubNegZeroMonoid.{u4} F (SubtractionCommMonoid.toSubtractionMonoid.{u4} F (AddCommGroup.toDivisionAddCommMonoid.{u4} F _inst_7))))) (Module.toMulActionWithZero.{u5, u4} πβ F (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ (NontriviallyNormedField.toNormedField.{u5} πβ _inst_6))))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_8))))], (WithSeminorms.{u5, u4, u3} πβ F ΞΉ' (NontriviallyNormedField.toNormedField.{u5} πβ _inst_6) _inst_7 _inst_8 _inst_14 q _inst_17) -> (forall (f : LinearMap.{u1, u5, u2, u4} π πβ (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ (NontriviallyNormedField.toNormedField.{u5} πβ _inst_6))))) Οββ E F (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_3 _inst_8), Iff (Continuous.{u2, u4} E F _inst_15 _inst_17 (FunLike.coe.{max (succ u2) (succ u4), succ u2, succ u4} (LinearMap.{u1, u5, u2, u4} π πβ (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ (NontriviallyNormedField.toNormedField.{u5} πβ _inst_6))))) Οββ E F (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_3 _inst_8) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => F) _x) (LinearMap.instFunLikeLinearMap.{u1, u5, u2, u4} π πβ E F (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ (NontriviallyNormedField.toNormedField.{u5} πβ _inst_6))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_3 _inst_8 Οββ) f)) (forall (i : ΞΉ'), Continuous.{u2, 0} E Real _inst_15 (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (FunLike.coe.{succ u2, succ u2, 1} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (MonoidWithZero.toZero.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) E (fun (_x : E) => (fun (a._@.Mathlib.Analysis.Seminorm._hyg.838 : E) => Real) _x) (SubadditiveHomClass.toFunLike.{u2, u2, 0} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (MonoidWithZero.toZero.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) E Real (AddZeroClass.toAdd.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real (AddCommMonoid.toAddMonoid.{0} Real (OrderedAddCommMonoid.toAddCommMonoid.{0} Real Real.orderedAddCommMonoid)))) (Preorder.toLE.{0} Real (PartialOrder.toPreorder.{0} Real (OrderedAddCommMonoid.toPartialOrder.{0} Real Real.orderedAddCommMonoid))) (AddGroupSeminormClass.toAddLEAddHomClass.{u2, u2, 0} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (MonoidWithZero.toZero.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) E Real (AddCommGroup.toAddGroup.{u2} E _inst_2) Real.orderedAddCommMonoid (SeminormClass.toAddGroupSeminormClass.{u2, u1, u2} (Seminorm.{u1, u2} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (MonoidWithZero.toZero.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))) π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (MonoidWithZero.toZero.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (Seminorm.instSeminormClass.{u1, u2} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (AddCommGroup.toAddGroup.{u2} E _inst_2) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (MonoidWithZero.toZero.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))))))) (Seminorm.comp.{u1, u5, u2, u4} π πβ E F (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (SeminormedCommRing.toSeminormedRing.{u5} πβ (NormedCommRing.toSeminormedCommRing.{u5} πβ (NormedField.toNormedCommRing.{u5} πβ (NontriviallyNormedField.toNormedField.{u5} πβ _inst_6)))) Οββ _inst_11 _inst_2 _inst_7 _inst_3 _inst_8 (q i) f))))
+Case conversion may be inaccurate. Consider using '#align seminorm.continuous_iff_continuous_comp Seminorm.continuous_iff_continuous_compβ'. -/
theorem continuous_iff_continuous_comp {q : SeminormFamily πβ F ΞΉ'} [TopologicalSpace E]
[TopologicalAddGroup E] [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousConstSMul πβ F]
(hq : WithSeminorms q) (f : E βββ[Οββ] F) : Continuous f β β i, Continuous ((q i).comp f) :=
β¨fun h i => Continuous.comp (hq.continuous_seminorm i) h, continuous_of_continuous_comp hq fβ©
#align seminorm.continuous_iff_continuous_comp Seminorm.continuous_iff_continuous_comp
+/- warning: seminorm.continuous_from_bounded -> Seminorm.continuous_from_bounded is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {πβ : Type.{u2}} {E : Type.{u3}} {F : Type.{u4}} {ΞΉ : Type.{u5}} {ΞΉ' : Type.{u6}} [_inst_2 : AddCommGroup.{u3} E] [_inst_4 : NormedField.{u1} π] [_inst_5 : Module.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] [_inst_7 : AddCommGroup.{u4} F] [_inst_9 : NormedField.{u2} πβ] [_inst_10 : Module.{u2, u4} πβ F (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7)] {Οββ : RingHom.{u1, u2} π πβ (NonAssocRing.toNonAssocSemiring.{u1} π (Ring.toNonAssocRing.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (NonAssocRing.toNonAssocSemiring.{u2} πβ (Ring.toNonAssocRing.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))))} [_inst_12 : RingHomIsometric.{u1, u2} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))) (NormedField.toHasNorm.{u1} π _inst_4) (NormedField.toHasNorm.{u2} πβ _inst_9) Οββ] [_inst_13 : Nonempty.{succ u5} ΞΉ] [_inst_14 : Nonempty.{succ u6} ΞΉ'] {p : SeminormFamily.{u1, u3, u5} π E ΞΉ _inst_4 _inst_2 _inst_5} {q : SeminormFamily.{u2, u4, u6} πβ F ΞΉ' _inst_9 _inst_7 _inst_10} [_inst_15 : TopologicalSpace.{u3} E] [_inst_16 : TopologicalAddGroup.{u3} E _inst_15 (AddCommGroup.toAddGroup.{u3} E _inst_2)], (WithSeminorms.{u1, u3, u5} π E ΞΉ _inst_4 _inst_2 _inst_5 _inst_13 p _inst_15) -> (forall [_inst_17 : TopologicalSpace.{u4} F] [_inst_18 : TopologicalAddGroup.{u4} F _inst_17 (AddCommGroup.toAddGroup.{u4} F _inst_7)], (WithSeminorms.{u2, u4, u6} πβ F ΞΉ' _inst_9 _inst_7 _inst_10 _inst_14 q _inst_17) -> (forall (f : LinearMap.{u1, u2, u3, u4} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_5 _inst_10), (Seminorm.IsBounded.{u1, u2, u3, u4, u5, u6} π πβ E F ΞΉ ΞΉ' _inst_4 _inst_2 _inst_5 _inst_9 _inst_7 _inst_10 Οββ _inst_12 p q f) -> (Continuous.{u3, u4} E F _inst_15 _inst_17 (coeFn.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (LinearMap.{u1, u2, u3, u4} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_5 _inst_10) (fun (_x : LinearMap.{u1, u2, u3, u4} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_5 _inst_10) => E -> F) (LinearMap.hasCoeToFun.{u1, u2, u3, u4} π πβ E F (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_7) _inst_5 _inst_10 Οββ) f))))
+but is expected to have type
+ forall {π : Type.{u6}} {πβ : Type.{u3}} {E : Type.{u5}} {F : Type.{u2}} {ΞΉ : Type.{u4}} {ΞΉ' : Type.{u1}} [_inst_2 : AddCommGroup.{u5} E] [_inst_4 : NormedField.{u6} π] [_inst_5 : Module.{u6, u5} π E (DivisionSemiring.toSemiring.{u6} π (Semifield.toDivisionSemiring.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_4)))) (AddCommGroup.toAddCommMonoid.{u5} E _inst_2)] [_inst_7 : AddCommGroup.{u2} F] [_inst_9 : NormedField.{u3} πβ] [_inst_10 : Module.{u3, u2} πβ F (DivisionSemiring.toSemiring.{u3} πβ (Semifield.toDivisionSemiring.{u3} πβ (Field.toSemifield.{u3} πβ (NormedField.toField.{u3} πβ _inst_9)))) (AddCommGroup.toAddCommMonoid.{u2} F _inst_7)] {Οββ : RingHom.{u6, u3} π πβ (Semiring.toNonAssocSemiring.{u6} π (DivisionSemiring.toSemiring.{u6} π (Semifield.toDivisionSemiring.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_4))))) (Semiring.toNonAssocSemiring.{u3} πβ (DivisionSemiring.toSemiring.{u3} πβ (Semifield.toDivisionSemiring.{u3} πβ (Field.toSemifield.{u3} πβ (NormedField.toField.{u3} πβ _inst_9)))))} [_inst_12 : RingHomIsometric.{u6, u3} π πβ (DivisionSemiring.toSemiring.{u6} π (Semifield.toDivisionSemiring.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_4)))) (DivisionSemiring.toSemiring.{u3} πβ (Semifield.toDivisionSemiring.{u3} πβ (Field.toSemifield.{u3} πβ (NormedField.toField.{u3} πβ _inst_9)))) (NormedField.toNorm.{u6} π _inst_4) (NormedField.toNorm.{u3} πβ _inst_9) Οββ] [_inst_13 : Nonempty.{succ u4} ΞΉ] [_inst_14 : Nonempty.{succ u1} ΞΉ'] {p : SeminormFamily.{u6, u5, u4} π E ΞΉ _inst_4 _inst_2 _inst_5} {q : SeminormFamily.{u3, u2, u1} πβ F ΞΉ' _inst_9 _inst_7 _inst_10} [_inst_15 : TopologicalSpace.{u5} E] [_inst_16 : TopologicalAddGroup.{u5} E _inst_15 (AddCommGroup.toAddGroup.{u5} E _inst_2)], (WithSeminorms.{u6, u5, u4} π E ΞΉ _inst_4 _inst_2 _inst_5 _inst_13 p _inst_15) -> (forall [_inst_17 : TopologicalSpace.{u2} F] [_inst_18 : TopologicalAddGroup.{u2} F _inst_17 (AddCommGroup.toAddGroup.{u2} F _inst_7)], (WithSeminorms.{u3, u2, u1} πβ F ΞΉ' _inst_9 _inst_7 _inst_10 _inst_14 q _inst_17) -> (forall (f : LinearMap.{u6, u3, u5, u2} π πβ (DivisionSemiring.toSemiring.{u6} π (Semifield.toDivisionSemiring.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_4)))) (DivisionSemiring.toSemiring.{u3} πβ (Semifield.toDivisionSemiring.{u3} πβ (Field.toSemifield.{u3} πβ (NormedField.toField.{u3} πβ _inst_9)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u5} E _inst_2) (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_5 _inst_10), (Seminorm.IsBounded.{u6, u3, u5, u2, u4, u1} π πβ E F ΞΉ ΞΉ' _inst_4 _inst_2 _inst_5 _inst_9 _inst_7 _inst_10 Οββ _inst_12 p q f) -> (Continuous.{u5, u2} E F _inst_15 _inst_17 (FunLike.coe.{max (succ u5) (succ u2), succ u5, succ u2} (LinearMap.{u6, u3, u5, u2} π πβ (DivisionSemiring.toSemiring.{u6} π (Semifield.toDivisionSemiring.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_4)))) (DivisionSemiring.toSemiring.{u3} πβ (Semifield.toDivisionSemiring.{u3} πβ (Field.toSemifield.{u3} πβ (NormedField.toField.{u3} πβ _inst_9)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u5} E _inst_2) (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_5 _inst_10) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => F) _x) (LinearMap.instFunLikeLinearMap.{u6, u3, u5, u2} π πβ E F (DivisionSemiring.toSemiring.{u6} π (Semifield.toDivisionSemiring.{u6} π (Field.toSemifield.{u6} π (NormedField.toField.{u6} π _inst_4)))) (DivisionSemiring.toSemiring.{u3} πβ (Semifield.toDivisionSemiring.{u3} πβ (Field.toSemifield.{u3} πβ (NormedField.toField.{u3} πβ _inst_9)))) (AddCommGroup.toAddCommMonoid.{u5} E _inst_2) (AddCommGroup.toAddCommMonoid.{u2} F _inst_7) _inst_5 _inst_10 Οββ) f))))
+Case conversion may be inaccurate. Consider using '#align seminorm.continuous_from_bounded Seminorm.continuous_from_boundedβ'. -/
theorem continuous_from_bounded {p : SeminormFamily π E ΞΉ} {q : SeminormFamily πβ F ΞΉ'}
[TopologicalSpace E] [TopologicalAddGroup E] (hp : WithSeminorms p) [TopologicalSpace F]
[TopologicalAddGroup F] (hq : WithSeminorms q) (f : E βββ[Οββ] F)
@@ -656,6 +916,12 @@ theorem continuous_from_bounded {p : SeminormFamily π E ΞΉ} {q : SeminormFami
simp only [le_add_iff_nonneg_right, zero_le']
#align seminorm.continuous_from_bounded Seminorm.continuous_from_bounded
+/- warning: seminorm.cont_with_seminorms_normed_space -> Seminorm.cont_withSeminorms_normedSpace is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {πβ : Type.{u2}} {E : Type.{u3}} {ΞΉ : Type.{u4}} [_inst_2 : AddCommGroup.{u3} E] [_inst_4 : NormedField.{u1} π] [_inst_5 : Module.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] [_inst_9 : NormedField.{u2} πβ] {Οββ : RingHom.{u1, u2} π πβ (NonAssocRing.toNonAssocSemiring.{u1} π (Ring.toNonAssocRing.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (NonAssocRing.toNonAssocSemiring.{u2} πβ (Ring.toNonAssocRing.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))))} [_inst_12 : RingHomIsometric.{u1, u2} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))) (NormedField.toHasNorm.{u1} π _inst_4) (NormedField.toHasNorm.{u2} πβ _inst_9) Οββ] [_inst_13 : Nonempty.{succ u4} ΞΉ] (F : Type.{u5}) [_inst_15 : SeminormedAddCommGroup.{u5} F] [_inst_16 : NormedSpace.{u2, u5} πβ F _inst_9 _inst_15] [_inst_17 : UniformSpace.{u3} E] [_inst_18 : UniformAddGroup.{u3} E _inst_17 (AddCommGroup.toAddGroup.{u3} E _inst_2)] {p : ΞΉ -> (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_5)))))}, (WithSeminorms.{u1, u3, u4} π E ΞΉ _inst_4 _inst_2 _inst_5 _inst_13 p (UniformSpace.toTopologicalSpace.{u3} E _inst_17)) -> (forall (f : LinearMap.{u1, u2, u3, u5} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u5} F (SeminormedAddCommGroup.toAddCommGroup.{u5} F _inst_15)) _inst_5 (NormedSpace.toModule.{u2, u5} πβ F _inst_9 _inst_15 _inst_16)), (Exists.{succ u4} (Finset.{u4} ΞΉ) (fun (s : Finset.{u4} ΞΉ) => Exists.{1} NNReal (fun (C : NNReal) => LE.le.{u3} (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_5))))) (Preorder.toHasLe.{u3} (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_5))))) (PartialOrder.toPreorder.{u3} (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_5))))) (Seminorm.partialOrder.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_5))))))) (Seminorm.comp.{u1, u2, u3, u5} π πβ E F (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (SeminormedCommRing.toSemiNormedRing.{u2} πβ (NormedCommRing.toSeminormedCommRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9))) Οββ _inst_12 _inst_2 (SeminormedAddCommGroup.toAddCommGroup.{u5} F _inst_15) _inst_5 (NormedSpace.toModule.{u2, u5} πβ F _inst_9 _inst_15 _inst_16) (normSeminorm.{u2, u5} πβ F _inst_9 _inst_15 _inst_16) f) (SMul.smul.{0, u3} NNReal (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_5))))) (Seminorm.hasSmul.{0, u1, u3} NNReal π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_5)))) (MulAction.toHasSmul.{0, 0} NNReal Real (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal NNReal.semiring)) (NNReal.mulAction.{0} Real (Monoid.toMulAction.{0} Real Real.monoid))) (Mul.toSMul.{0} NNReal (MulOneClass.toHasMul.{0} NNReal (Monoid.toMulOneClass.{0} NNReal (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal NNReal.semiring))))) (IsScalarTower.left.{0, 0} NNReal Real (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal NNReal.semiring)) (NNReal.mulAction.{0} Real (Monoid.toMulAction.{0} Real Real.monoid)))) C (Finset.sup.{u3, u4} (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_5))))) ΞΉ (Seminorm.semilatticeSup.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_5))))) (Seminorm.orderBot.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) _inst_2 _inst_5) s p))))) -> (Continuous.{u3, u5} E F (UniformSpace.toTopologicalSpace.{u3} E _inst_17) (UniformSpace.toTopologicalSpace.{u5} F (PseudoMetricSpace.toUniformSpace.{u5} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u5} F _inst_15))) (coeFn.{max (succ u3) (succ u5), max (succ u3) (succ u5)} (LinearMap.{u1, u2, u3, u5} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u5} F (SeminormedAddCommGroup.toAddCommGroup.{u5} F _inst_15)) _inst_5 (NormedSpace.toModule.{u2, u5} πβ F _inst_9 _inst_15 _inst_16)) (fun (_x : LinearMap.{u1, u2, u3, u5} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u5} F (SeminormedAddCommGroup.toAddCommGroup.{u5} F _inst_15)) _inst_5 (NormedSpace.toModule.{u2, u5} πβ F _inst_9 _inst_15 _inst_16)) => E -> F) (LinearMap.hasCoeToFun.{u1, u2, u3, u5} π πβ E F (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u5} F (SeminormedAddCommGroup.toAddCommGroup.{u5} F _inst_15)) _inst_5 (NormedSpace.toModule.{u2, u5} πβ F _inst_9 _inst_15 _inst_16) Οββ) f)))
+but is expected to have type
+ forall {π : Type.{u2}} {πβ : Type.{u4}} {E : Type.{u3}} {ΞΉ : Type.{u1}} [_inst_2 : AddCommGroup.{u3} E] [_inst_4 : NormedField.{u2} π] [_inst_5 : Module.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] [_inst_9 : NormedField.{u4} πβ] {Οββ : RingHom.{u2, u4} π πβ (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4))))) (Semiring.toNonAssocSemiring.{u4} πβ (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_9)))))} [_inst_12 : RingHomIsometric.{u2, u4} π πβ (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4)))) (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_9)))) (NormedField.toNorm.{u2} π _inst_4) (NormedField.toNorm.{u4} πβ _inst_9) Οββ] [_inst_13 : Nonempty.{succ u1} ΞΉ] (F : Type.{u5}) [_inst_15 : SeminormedAddCommGroup.{u5} F] [_inst_16 : NormedSpace.{u4, u5} πβ F _inst_9 _inst_15] [_inst_17 : UniformSpace.{u3} E] [_inst_18 : UniformAddGroup.{u3} E _inst_17 (AddCommGroup.toAddGroup.{u3} E _inst_2)] {p : ΞΉ -> (Seminorm.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_5)))))}, (WithSeminorms.{u2, u3, u1} π E ΞΉ _inst_4 _inst_2 _inst_5 _inst_13 p (UniformSpace.toTopologicalSpace.{u3} E _inst_17)) -> (forall (f : LinearMap.{u2, u4, u3, u5} π πβ (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4)))) (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_9)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u5} F (SeminormedAddCommGroup.toAddCommGroup.{u5} F _inst_15)) _inst_5 (NormedSpace.toModule.{u4, u5} πβ F _inst_9 _inst_15 _inst_16)), (Exists.{succ u1} (Finset.{u1} ΞΉ) (fun (s : Finset.{u1} ΞΉ) => Exists.{1} NNReal (fun (C : NNReal) => LE.le.{u3} (Seminorm.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (MonoidWithZero.toZero.{u2} π (Semiring.toMonoidWithZero.{u2} π (Ring.toSemiring.{u2} π (SeminormedRing.toRing.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4))))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (Ring.toSemiring.{u2} π (SeminormedRing.toRing.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (Ring.toSemiring.{u2} π (SeminormedRing.toRing.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_5))))) (Preorder.toLE.{u3} (Seminorm.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (MonoidWithZero.toZero.{u2} π (Semiring.toMonoidWithZero.{u2} π (Ring.toSemiring.{u2} π (SeminormedRing.toRing.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4))))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (Ring.toSemiring.{u2} π (SeminormedRing.toRing.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (Ring.toSemiring.{u2} π (SeminormedRing.toRing.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_5))))) (PartialOrder.toPreorder.{u3} (Seminorm.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (MonoidWithZero.toZero.{u2} π (Semiring.toMonoidWithZero.{u2} π (Ring.toSemiring.{u2} π (SeminormedRing.toRing.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4))))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (Ring.toSemiring.{u2} π (SeminormedRing.toRing.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (Ring.toSemiring.{u2} π (SeminormedRing.toRing.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_5))))) (Seminorm.instPartialOrder.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (MonoidWithZero.toZero.{u2} π (Semiring.toMonoidWithZero.{u2} π (Ring.toSemiring.{u2} π (SeminormedRing.toRing.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4))))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (Ring.toSemiring.{u2} π (SeminormedRing.toRing.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (Ring.toSemiring.{u2} π (SeminormedRing.toRing.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_5))))))) (Seminorm.comp.{u2, u4, u3, u5} π πβ E F (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4))) (SeminormedCommRing.toSeminormedRing.{u4} πβ (NormedCommRing.toSeminormedCommRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ _inst_9))) Οββ _inst_12 _inst_2 (SeminormedAddCommGroup.toAddCommGroup.{u5} F _inst_15) _inst_5 (NormedSpace.toModule.{u4, u5} πβ F _inst_9 _inst_15 _inst_16) (normSeminorm.{u4, u5} πβ F _inst_9 _inst_15 _inst_16) f) (HSMul.hSMul.{0, u3, u3} NNReal (Seminorm.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_5))))) (Seminorm.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_5))))) (instHSMul.{0, u3} NNReal (Seminorm.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_5))))) (Seminorm.instSMul.{0, u2, u3} NNReal π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_5)))) Seminorm.smul_nnreal_real (Algebra.toSMul.{0, 0} NNReal NNReal instNNRealCommSemiring instNNRealSemiring (Algebra.id.{0} NNReal instNNRealCommSemiring)) (IsScalarTower.left.{0, 0} NNReal Real (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal instNNRealSemiring)) (NNReal.instMulActionNNRealToMonoidToMonoidWithZeroInstNNRealSemiring.{0} Real (MulActionWithZero.toMulAction.{0, 0} Real Real Real.instMonoidWithZeroReal Real.instZeroReal (MonoidWithZero.toMulActionWithZero.{0} Real Real.instMonoidWithZeroReal)))))) C (Finset.sup.{u3, u1} (Seminorm.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_5))))) ΞΉ (Seminorm.instSemilatticeSup.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toSMul.{u2, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u3} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u3} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_2))))) (Module.toMulActionWithZero.{u2, u3} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_5))))) (Seminorm.instOrderBot.{u2, u3} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_4))) _inst_2 _inst_5) s p))))) -> (Continuous.{u3, u5} E F (UniformSpace.toTopologicalSpace.{u3} E _inst_17) (UniformSpace.toTopologicalSpace.{u5} F (PseudoMetricSpace.toUniformSpace.{u5} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u5} F _inst_15))) (FunLike.coe.{max (succ u3) (succ u5), succ u3, succ u5} (LinearMap.{u2, u4, u3, u5} π πβ (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4)))) (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_9)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u5} F (SeminormedAddCommGroup.toAddCommGroup.{u5} F _inst_15)) _inst_5 (NormedSpace.toModule.{u4, u5} πβ F _inst_9 _inst_15 _inst_16)) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => F) _x) (LinearMap.instFunLikeLinearMap.{u2, u4, u3, u5} π πβ E F (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_4)))) (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_9)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u5} F (SeminormedAddCommGroup.toAddCommGroup.{u5} F _inst_15)) _inst_5 (NormedSpace.toModule.{u4, u5} πβ F _inst_9 _inst_15 _inst_16) Οββ) f)))
+Case conversion may be inaccurate. Consider using '#align seminorm.cont_with_seminorms_normed_space Seminorm.cont_withSeminorms_normedSpaceβ'. -/
theorem cont_withSeminorms_normedSpace (F) [SeminormedAddCommGroup F] [NormedSpace πβ F]
[UniformSpace E] [UniformAddGroup E] {p : ΞΉ β Seminorm π E} (hp : WithSeminorms p)
(f : E βββ[Οββ] F) (hf : β (s : Finset ΞΉ)(C : ββ₯0), (normSeminorm πβ F).comp f β€ C β’ s.sup p) :
@@ -664,6 +930,12 @@ theorem cont_withSeminorms_normedSpace (F) [SeminormedAddCommGroup F] [NormedSpa
exact continuous_from_bounded hp (norm_withSeminorms πβ F) f hf
#align seminorm.cont_with_seminorms_normed_space Seminorm.cont_withSeminorms_normedSpace
+/- warning: seminorm.cont_normed_space_to_with_seminorms -> Seminorm.cont_normedSpace_to_withSeminorms is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {πβ : Type.{u2}} {F : Type.{u3}} {ΞΉ : Type.{u4}} [_inst_4 : NormedField.{u1} π] [_inst_7 : AddCommGroup.{u3} F] [_inst_9 : NormedField.{u2} πβ] [_inst_10 : Module.{u2, u3} πβ F (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] {Οββ : RingHom.{u1, u2} π πβ (NonAssocRing.toNonAssocSemiring.{u1} π (Ring.toNonAssocRing.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (NonAssocRing.toNonAssocSemiring.{u2} πβ (Ring.toNonAssocRing.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))))} [_inst_12 : RingHomIsometric.{u1, u2} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))) (NormedField.toHasNorm.{u1} π _inst_4) (NormedField.toHasNorm.{u2} πβ _inst_9) Οββ] [_inst_13 : Nonempty.{succ u4} ΞΉ] (E : Type.{u5}) [_inst_15 : SeminormedAddCommGroup.{u5} E] [_inst_16 : NormedSpace.{u1, u5} π E _inst_4 _inst_15] [_inst_17 : UniformSpace.{u3} F] [_inst_18 : UniformAddGroup.{u3} F _inst_17 (AddCommGroup.toAddGroup.{u3} F _inst_7)] {q : ΞΉ -> (Seminorm.{u2, u3} πβ F (SeminormedCommRing.toSemiNormedRing.{u2} πβ (NormedCommRing.toSeminormedCommRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9))) (AddCommGroup.toAddGroup.{u3} F _inst_7) (SMulZeroClass.toHasSmul.{u2, u3} πβ F (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (SMulWithZero.toSmulZeroClass.{u2, u3} πβ F (MulZeroClass.toHasZero.{u2} πβ (MulZeroOneClass.toMulZeroClass.{u2} πβ (MonoidWithZero.toMulZeroOneClass.{u2} πβ (Semiring.toMonoidWithZero.{u2} πβ (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (MulActionWithZero.toSMulWithZero.{u2, u3} πβ F (Semiring.toMonoidWithZero.{u2} πβ (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (Module.toMulActionWithZero.{u2, u3} πβ F (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_10)))))}, (WithSeminorms.{u2, u3, u4} πβ F ΞΉ _inst_9 _inst_7 _inst_10 _inst_13 q (UniformSpace.toTopologicalSpace.{u3} F _inst_17)) -> (forall (f : LinearMap.{u1, u2, u5, u3} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (NormedSpace.toModule.{u1, u5} π E _inst_4 _inst_15 _inst_16) _inst_10), (forall (i : ΞΉ), Exists.{1} NNReal (fun (C : NNReal) => LE.le.{u5} (Seminorm.{u1, u5} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (AddCommGroup.toAddGroup.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (SMulZeroClass.toHasSmul.{u1, u5} π E (AddZeroClass.toHasZero.{u5} E (AddMonoid.toAddZeroClass.{u5} E (AddCommMonoid.toAddMonoid.{u5} E (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15))))) (SMulWithZero.toSmulZeroClass.{u1, u5} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))))))) (AddZeroClass.toHasZero.{u5} E (AddMonoid.toAddZeroClass.{u5} E (AddCommMonoid.toAddMonoid.{u5} E (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15))))) (MulActionWithZero.toSMulWithZero.{u1, u5} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))))) (AddZeroClass.toHasZero.{u5} E (AddMonoid.toAddZeroClass.{u5} E (AddCommMonoid.toAddMonoid.{u5} E (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15))))) (Module.toMulActionWithZero.{u1, u5} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (NormedSpace.toModule.{u1, u5} π E _inst_4 _inst_15 _inst_16)))))) (Preorder.toHasLe.{u5} (Seminorm.{u1, u5} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (AddCommGroup.toAddGroup.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (SMulZeroClass.toHasSmul.{u1, u5} π E (AddZeroClass.toHasZero.{u5} E (AddMonoid.toAddZeroClass.{u5} E (AddCommMonoid.toAddMonoid.{u5} E (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15))))) (SMulWithZero.toSmulZeroClass.{u1, u5} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))))))) (AddZeroClass.toHasZero.{u5} E (AddMonoid.toAddZeroClass.{u5} E (AddCommMonoid.toAddMonoid.{u5} E (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15))))) (MulActionWithZero.toSMulWithZero.{u1, u5} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))))) (AddZeroClass.toHasZero.{u5} E (AddMonoid.toAddZeroClass.{u5} E (AddCommMonoid.toAddMonoid.{u5} E (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15))))) (Module.toMulActionWithZero.{u1, u5} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (NormedSpace.toModule.{u1, u5} π E _inst_4 _inst_15 _inst_16)))))) (PartialOrder.toPreorder.{u5} (Seminorm.{u1, u5} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (AddCommGroup.toAddGroup.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (SMulZeroClass.toHasSmul.{u1, u5} π E (AddZeroClass.toHasZero.{u5} E (AddMonoid.toAddZeroClass.{u5} E (AddCommMonoid.toAddMonoid.{u5} E (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15))))) (SMulWithZero.toSmulZeroClass.{u1, u5} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))))))) (AddZeroClass.toHasZero.{u5} E (AddMonoid.toAddZeroClass.{u5} E (AddCommMonoid.toAddMonoid.{u5} E (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15))))) (MulActionWithZero.toSMulWithZero.{u1, u5} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))))) (AddZeroClass.toHasZero.{u5} E (AddMonoid.toAddZeroClass.{u5} E (AddCommMonoid.toAddMonoid.{u5} E (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15))))) (Module.toMulActionWithZero.{u1, u5} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (NormedSpace.toModule.{u1, u5} π E _inst_4 _inst_15 _inst_16)))))) (Seminorm.partialOrder.{u1, u5} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (AddCommGroup.toAddGroup.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (SMulZeroClass.toHasSmul.{u1, u5} π E (AddZeroClass.toHasZero.{u5} E (AddMonoid.toAddZeroClass.{u5} E (AddCommMonoid.toAddMonoid.{u5} E (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15))))) (SMulWithZero.toSmulZeroClass.{u1, u5} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))))))) (AddZeroClass.toHasZero.{u5} E (AddMonoid.toAddZeroClass.{u5} E (AddCommMonoid.toAddMonoid.{u5} E (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15))))) (MulActionWithZero.toSMulWithZero.{u1, u5} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))))) (AddZeroClass.toHasZero.{u5} E (AddMonoid.toAddZeroClass.{u5} E (AddCommMonoid.toAddMonoid.{u5} E (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15))))) (Module.toMulActionWithZero.{u1, u5} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (NormedSpace.toModule.{u1, u5} π E _inst_4 _inst_15 _inst_16)))))))) (Seminorm.comp.{u1, u2, u5, u3} π πβ E F (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (SeminormedCommRing.toSemiNormedRing.{u2} πβ (NormedCommRing.toSeminormedCommRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9))) Οββ _inst_12 (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15) _inst_7 (NormedSpace.toModule.{u1, u5} π E _inst_4 _inst_15 _inst_16) _inst_10 (q i) f) (SMul.smul.{0, u5} NNReal (Seminorm.{u1, u5} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (AddCommGroup.toAddGroup.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (SMulZeroClass.toHasSmul.{u1, u5} π E (AddZeroClass.toHasZero.{u5} E (AddMonoid.toAddZeroClass.{u5} E (AddCommMonoid.toAddMonoid.{u5} E (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15))))) (SMulWithZero.toSmulZeroClass.{u1, u5} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))))))) (AddZeroClass.toHasZero.{u5} E (AddMonoid.toAddZeroClass.{u5} E (AddCommMonoid.toAddMonoid.{u5} E (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15))))) (MulActionWithZero.toSMulWithZero.{u1, u5} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))))) (AddZeroClass.toHasZero.{u5} E (AddMonoid.toAddZeroClass.{u5} E (AddCommMonoid.toAddMonoid.{u5} E (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15))))) (Module.toMulActionWithZero.{u1, u5} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (NormedSpace.toModule.{u1, u5} π E _inst_4 _inst_15 _inst_16)))))) (Seminorm.hasSmul.{0, u1, u5} NNReal π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))) (AddCommGroup.toAddGroup.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (SMulZeroClass.toHasSmul.{u1, u5} π E (AddZeroClass.toHasZero.{u5} E (AddMonoid.toAddZeroClass.{u5} E (AddCommMonoid.toAddMonoid.{u5} E (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15))))) (SMulWithZero.toSmulZeroClass.{u1, u5} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))))))) (AddZeroClass.toHasZero.{u5} E (AddMonoid.toAddZeroClass.{u5} E (AddCommMonoid.toAddMonoid.{u5} E (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15))))) (MulActionWithZero.toSMulWithZero.{u1, u5} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))))) (AddZeroClass.toHasZero.{u5} E (AddMonoid.toAddZeroClass.{u5} E (AddCommMonoid.toAddMonoid.{u5} E (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15))))) (Module.toMulActionWithZero.{u1, u5} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (NormedSpace.toModule.{u1, u5} π E _inst_4 _inst_15 _inst_16))))) (MulAction.toHasSmul.{0, 0} NNReal Real (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal NNReal.semiring)) (NNReal.mulAction.{0} Real (Monoid.toMulAction.{0} Real Real.monoid))) (Mul.toSMul.{0} NNReal (MulOneClass.toHasMul.{0} NNReal (Monoid.toMulOneClass.{0} NNReal (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal NNReal.semiring))))) (IsScalarTower.left.{0, 0} NNReal Real (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal NNReal.semiring)) (NNReal.mulAction.{0} Real (Monoid.toMulAction.{0} Real Real.monoid)))) C (normSeminorm.{u1, u5} π E _inst_4 _inst_15 _inst_16)))) -> (Continuous.{u5, u3} E F (UniformSpace.toTopologicalSpace.{u5} E (PseudoMetricSpace.toUniformSpace.{u5} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u5} E _inst_15))) (UniformSpace.toTopologicalSpace.{u3} F _inst_17) (coeFn.{max (succ u5) (succ u3), max (succ u5) (succ u3)} (LinearMap.{u1, u2, u5, u3} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (NormedSpace.toModule.{u1, u5} π E _inst_4 _inst_15 _inst_16) _inst_10) (fun (_x : LinearMap.{u1, u2, u5, u3} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (NormedSpace.toModule.{u1, u5} π E _inst_4 _inst_15 _inst_16) _inst_10) => E -> F) (LinearMap.hasCoeToFun.{u1, u2, u5, u3} π πβ E F (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_4)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9)))) (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (NormedSpace.toModule.{u1, u5} π E _inst_4 _inst_15 _inst_16) _inst_10 Οββ) f)))
+but is expected to have type
+ forall {π : Type.{u4}} {πβ : Type.{u2}} {F : Type.{u3}} {ΞΉ : Type.{u1}} [_inst_4 : NormedField.{u4} π] [_inst_7 : AddCommGroup.{u3} F] [_inst_9 : NormedField.{u2} πβ] [_inst_10 : Module.{u2, u3} πβ F (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ _inst_9)))) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] {Οββ : RingHom.{u4, u2} π πβ (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_4))))) (Semiring.toNonAssocSemiring.{u2} πβ (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ _inst_9)))))} [_inst_12 : RingHomIsometric.{u4, u2} π πβ (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_4)))) (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ _inst_9)))) (NormedField.toNorm.{u4} π _inst_4) (NormedField.toNorm.{u2} πβ _inst_9) Οββ] [_inst_13 : Nonempty.{succ u1} ΞΉ] (E : Type.{u5}) [_inst_15 : SeminormedAddCommGroup.{u5} E] [_inst_16 : NormedSpace.{u4, u5} π E _inst_4 _inst_15] [_inst_17 : UniformSpace.{u3} F] [_inst_18 : UniformAddGroup.{u3} F _inst_17 (AddCommGroup.toAddGroup.{u3} F _inst_7)] {q : ΞΉ -> (Seminorm.{u2, u3} πβ F (SeminormedCommRing.toSeminormedRing.{u2} πβ (NormedCommRing.toSeminormedCommRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9))) (AddCommGroup.toAddGroup.{u3} F _inst_7) (SMulZeroClass.toSMul.{u2, u3} πβ F (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (SMulWithZero.toSMulZeroClass.{u2, u3} πβ F (CommMonoidWithZero.toZero.{u2} πβ (CommGroupWithZero.toCommMonoidWithZero.{u2} πβ (Semifield.toCommGroupWithZero.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ _inst_9))))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (MulActionWithZero.toSMulWithZero.{u2, u3} πβ F (Semiring.toMonoidWithZero.{u2} πβ (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ _inst_9))))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (Module.toMulActionWithZero.{u2, u3} πβ F (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ _inst_9)))) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_10)))))}, (WithSeminorms.{u2, u3, u1} πβ F ΞΉ _inst_9 _inst_7 _inst_10 _inst_13 q (UniformSpace.toTopologicalSpace.{u3} F _inst_17)) -> (forall (f : LinearMap.{u4, u2, u5, u3} π πβ (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_4)))) (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ _inst_9)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (NormedSpace.toModule.{u4, u5} π E _inst_4 _inst_15 _inst_16) _inst_10), (forall (i : ΞΉ), Exists.{1} NNReal (fun (C : NNReal) => LE.le.{u5} (Seminorm.{u4, u5} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_4))) (AddCommGroup.toAddGroup.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (SMulZeroClass.toSMul.{u4, u5} π E (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)))))) (SMulWithZero.toSMulZeroClass.{u4, u5} π E (MonoidWithZero.toZero.{u4} π (Semiring.toMonoidWithZero.{u4} π (Ring.toSemiring.{u4} π (SeminormedRing.toRing.{u4} π (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_4))))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)))))) (MulActionWithZero.toSMulWithZero.{u4, u5} π E (Semiring.toMonoidWithZero.{u4} π (Ring.toSemiring.{u4} π (SeminormedRing.toRing.{u4} π (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_4)))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)))))) (Module.toMulActionWithZero.{u4, u5} π E (Ring.toSemiring.{u4} π (SeminormedRing.toRing.{u4} π (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (NormedSpace.toModule.{u4, u5} π E _inst_4 _inst_15 _inst_16)))))) (Preorder.toLE.{u5} (Seminorm.{u4, u5} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_4))) (AddCommGroup.toAddGroup.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (SMulZeroClass.toSMul.{u4, u5} π E (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)))))) (SMulWithZero.toSMulZeroClass.{u4, u5} π E (MonoidWithZero.toZero.{u4} π (Semiring.toMonoidWithZero.{u4} π (Ring.toSemiring.{u4} π (SeminormedRing.toRing.{u4} π (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_4))))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)))))) (MulActionWithZero.toSMulWithZero.{u4, u5} π E (Semiring.toMonoidWithZero.{u4} π (Ring.toSemiring.{u4} π (SeminormedRing.toRing.{u4} π (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_4)))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)))))) (Module.toMulActionWithZero.{u4, u5} π E (Ring.toSemiring.{u4} π (SeminormedRing.toRing.{u4} π (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (NormedSpace.toModule.{u4, u5} π E _inst_4 _inst_15 _inst_16)))))) (PartialOrder.toPreorder.{u5} (Seminorm.{u4, u5} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_4))) (AddCommGroup.toAddGroup.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (SMulZeroClass.toSMul.{u4, u5} π E (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)))))) (SMulWithZero.toSMulZeroClass.{u4, u5} π E (MonoidWithZero.toZero.{u4} π (Semiring.toMonoidWithZero.{u4} π (Ring.toSemiring.{u4} π (SeminormedRing.toRing.{u4} π (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_4))))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)))))) (MulActionWithZero.toSMulWithZero.{u4, u5} π E (Semiring.toMonoidWithZero.{u4} π (Ring.toSemiring.{u4} π (SeminormedRing.toRing.{u4} π (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_4)))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)))))) (Module.toMulActionWithZero.{u4, u5} π E (Ring.toSemiring.{u4} π (SeminormedRing.toRing.{u4} π (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (NormedSpace.toModule.{u4, u5} π E _inst_4 _inst_15 _inst_16)))))) (Seminorm.instPartialOrder.{u4, u5} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_4))) (AddCommGroup.toAddGroup.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (SMulZeroClass.toSMul.{u4, u5} π E (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)))))) (SMulWithZero.toSMulZeroClass.{u4, u5} π E (MonoidWithZero.toZero.{u4} π (Semiring.toMonoidWithZero.{u4} π (Ring.toSemiring.{u4} π (SeminormedRing.toRing.{u4} π (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_4))))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)))))) (MulActionWithZero.toSMulWithZero.{u4, u5} π E (Semiring.toMonoidWithZero.{u4} π (Ring.toSemiring.{u4} π (SeminormedRing.toRing.{u4} π (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_4)))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)))))) (Module.toMulActionWithZero.{u4, u5} π E (Ring.toSemiring.{u4} π (SeminormedRing.toRing.{u4} π (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_4))))) (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (NormedSpace.toModule.{u4, u5} π E _inst_4 _inst_15 _inst_16)))))))) (Seminorm.comp.{u4, u2, u5, u3} π πβ E F (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_4))) (SeminormedCommRing.toSeminormedRing.{u2} πβ (NormedCommRing.toSeminormedCommRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_9))) Οββ _inst_12 (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15) _inst_7 (NormedSpace.toModule.{u4, u5} π E _inst_4 _inst_15 _inst_16) _inst_10 (q i) f) (HSMul.hSMul.{0, u5, u5} NNReal (Seminorm.{u4, u5} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_4))) (SeminormedAddGroup.toAddGroup.{u5} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u5} E _inst_15)) (SMulZeroClass.toSMul.{u4, u5} π E (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)))))) (SMulWithZero.toSMulZeroClass.{u4, u5} π E (CommMonoidWithZero.toZero.{u4} π (CommGroupWithZero.toCommMonoidWithZero.{u4} π (Semifield.toCommGroupWithZero.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_4))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)))))) (MulActionWithZero.toSMulWithZero.{u4, u5} π E (Semiring.toMonoidWithZero.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_4))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)))))) (Module.toMulActionWithZero.{u4, u5} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_4)))) (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (NormedSpace.toModule.{u4, u5} π E _inst_4 _inst_15 _inst_16)))))) (Seminorm.{u4, u5} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_4))) (SeminormedAddGroup.toAddGroup.{u5} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u5} E _inst_15)) (SMulZeroClass.toSMul.{u4, u5} π E (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)))))) (SMulWithZero.toSMulZeroClass.{u4, u5} π E (CommMonoidWithZero.toZero.{u4} π (CommGroupWithZero.toCommMonoidWithZero.{u4} π (Semifield.toCommGroupWithZero.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_4))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)))))) (MulActionWithZero.toSMulWithZero.{u4, u5} π E (Semiring.toMonoidWithZero.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_4))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)))))) (Module.toMulActionWithZero.{u4, u5} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_4)))) (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (NormedSpace.toModule.{u4, u5} π E _inst_4 _inst_15 _inst_16)))))) (instHSMul.{0, u5} NNReal (Seminorm.{u4, u5} π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_4))) (SeminormedAddGroup.toAddGroup.{u5} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u5} E _inst_15)) (SMulZeroClass.toSMul.{u4, u5} π E (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)))))) (SMulWithZero.toSMulZeroClass.{u4, u5} π E (CommMonoidWithZero.toZero.{u4} π (CommGroupWithZero.toCommMonoidWithZero.{u4} π (Semifield.toCommGroupWithZero.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_4))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)))))) (MulActionWithZero.toSMulWithZero.{u4, u5} π E (Semiring.toMonoidWithZero.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_4))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)))))) (Module.toMulActionWithZero.{u4, u5} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_4)))) (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (NormedSpace.toModule.{u4, u5} π E _inst_4 _inst_15 _inst_16)))))) (Seminorm.instSMul.{0, u4, u5} NNReal π E (SeminormedCommRing.toSeminormedRing.{u4} π (NormedCommRing.toSeminormedCommRing.{u4} π (NormedField.toNormedCommRing.{u4} π _inst_4))) (SeminormedAddGroup.toAddGroup.{u5} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u5} E _inst_15)) (SMulZeroClass.toSMul.{u4, u5} π E (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)))))) (SMulWithZero.toSMulZeroClass.{u4, u5} π E (CommMonoidWithZero.toZero.{u4} π (CommGroupWithZero.toCommMonoidWithZero.{u4} π (Semifield.toCommGroupWithZero.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_4))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)))))) (MulActionWithZero.toSMulWithZero.{u4, u5} π E (Semiring.toMonoidWithZero.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_4))))) (NegZeroClass.toZero.{u5} E (SubNegZeroMonoid.toNegZeroClass.{u5} E (SubtractionMonoid.toSubNegZeroMonoid.{u5} E (SubtractionCommMonoid.toSubtractionMonoid.{u5} E (AddCommGroup.toDivisionAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)))))) (Module.toMulActionWithZero.{u4, u5} π E (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_4)))) (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (NormedSpace.toModule.{u4, u5} π E _inst_4 _inst_15 _inst_16))))) Seminorm.smul_nnreal_real (Algebra.toSMul.{0, 0} NNReal NNReal instNNRealCommSemiring instNNRealSemiring (Algebra.id.{0} NNReal instNNRealCommSemiring)) (IsScalarTower.left.{0, 0} NNReal Real (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal instNNRealSemiring)) (NNReal.instMulActionNNRealToMonoidToMonoidWithZeroInstNNRealSemiring.{0} Real (MulActionWithZero.toMulAction.{0, 0} Real Real Real.instMonoidWithZeroReal Real.instZeroReal (MonoidWithZero.toMulActionWithZero.{0} Real Real.instMonoidWithZeroReal)))))) C (normSeminorm.{u4, u5} π E _inst_4 _inst_15 _inst_16)))) -> (Continuous.{u5, u3} E F (UniformSpace.toTopologicalSpace.{u5} E (PseudoMetricSpace.toUniformSpace.{u5} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u5} E _inst_15))) (UniformSpace.toTopologicalSpace.{u3} F _inst_17) (FunLike.coe.{max (succ u3) (succ u5), succ u5, succ u3} (LinearMap.{u4, u2, u5, u3} π πβ (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_4)))) (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ _inst_9)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (NormedSpace.toModule.{u4, u5} π E _inst_4 _inst_15 _inst_16) _inst_10) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => F) _x) (LinearMap.instFunLikeLinearMap.{u4, u2, u5, u3} π πβ E F (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π _inst_4)))) (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ _inst_9)))) (AddCommGroup.toAddCommMonoid.{u5} E (SeminormedAddCommGroup.toAddCommGroup.{u5} E _inst_15)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (NormedSpace.toModule.{u4, u5} π E _inst_4 _inst_15 _inst_16) _inst_10 Οββ) f)))
+Case conversion may be inaccurate. Consider using '#align seminorm.cont_normed_space_to_with_seminorms Seminorm.cont_normedSpace_to_withSeminormsβ'. -/
theorem cont_normedSpace_to_withSeminorms (E) [SeminormedAddCommGroup E] [NormedSpace π E]
[UniformSpace F] [UniformAddGroup F] {q : ΞΉ β Seminorm πβ F} (hq : WithSeminorms q)
(f : E βββ[Οββ] F) (hf : β i : ΞΉ, β C : ββ₯0, (q i).comp f β€ C β’ normSeminorm π E) :
@@ -683,7 +955,13 @@ open LocallyConvexSpace
variable [Nonempty ΞΉ] [NormedField π] [NormedSpace β π] [AddCommGroup E] [Module π E] [Module β E]
[IsScalarTower β π E] [TopologicalSpace E] [TopologicalAddGroup E]
-theorem WithSeminorms.to_locallyConvexSpace {p : SeminormFamily π E ΞΉ} (hp : WithSeminorms p) :
+/- warning: with_seminorms.to_locally_convex_space -> WithSeminorms.toLocallyConvexSpace is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : Nonempty.{succ u3} ΞΉ] [_inst_2 : NormedField.{u1} π] [_inst_3 : NormedSpace.{0, u1} Real π Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_2)))))] [_inst_4 : AddCommGroup.{u2} E] [_inst_5 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)] [_inst_6 : Module.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)] [_inst_7 : IsScalarTower.{0, u1, u2} Real π E (SMulZeroClass.toHasSmul.{0, u1} Real π (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (AddCommMonoid.toAddMonoid.{u1} π (AddCommGroup.toAddCommMonoid.{u1} π (SeminormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_2)))))))))) (SMulWithZero.toSmulZeroClass.{0, u1} Real π (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real (Ring.toSemiring.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField)))))))) (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (AddCommMonoid.toAddMonoid.{u1} π (AddCommGroup.toAddCommMonoid.{u1} π (SeminormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_2)))))))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real π (Semiring.toMonoidWithZero.{0} Real (Ring.toSemiring.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField))))) (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (AddCommMonoid.toAddMonoid.{u1} π (AddCommGroup.toAddCommMonoid.{u1} π (SeminormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_2)))))))))) (Module.toMulActionWithZero.{0, u1} Real π (Ring.toSemiring.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField)))) (AddCommGroup.toAddCommMonoid.{u1} π (SeminormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_2))))))) (NormedSpace.toModule.{0, u1} Real π Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_2))))) _inst_3))))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_2)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_2))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_6))))] [_inst_8 : TopologicalSpace.{u2} E] [_inst_9 : TopologicalAddGroup.{u2} E _inst_8 (AddCommGroup.toAddGroup.{u2} E _inst_4)] {p : SeminormFamily.{u1, u2, u3} π E ΞΉ _inst_2 _inst_4 _inst_5}, (WithSeminorms.{u1, u2, u3} π E ΞΉ _inst_2 _inst_4 _inst_5 _inst_1 p _inst_8) -> (LocallyConvexSpace.{0, u2} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_6 _inst_8)
+but is expected to have type
+ forall {π : Type.{u3}} {E : Type.{u2}} {ΞΉ : Type.{u1}} [_inst_1 : Nonempty.{succ u1} ΞΉ] [_inst_2 : NormedField.{u3} π] [_inst_3 : NormedSpace.{0, u3} Real π Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u3} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u3} π (NormedRing.toNonUnitalNormedRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_2)))))] [_inst_4 : AddCommGroup.{u2} E] [_inst_5 : Module.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)] [_inst_6 : Module.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)] [_inst_7 : IsScalarTower.{0, u3, u2} Real π E (SMulZeroClass.toSMul.{0, u3} Real π (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u3} Real π Real.instZeroReal (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u3} Real π Real.instMonoidWithZeroReal (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_2))))) (Module.toMulActionWithZero.{0, u3} Real π Real.semiring (NonUnitalNonAssocSemiring.toAddCommMonoid.{u3} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u3} π (NonAssocRing.toNonUnitalNonAssocRing.{u3} π (Ring.toNonAssocRing.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_2))))))) (NormedSpace.toModule.{0, u3} Real π Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u3} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u3} π (NormedRing.toNonUnitalNormedRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π _inst_2))))) _inst_3))))) (SMulZeroClass.toSMul.{u3, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u3, u2} π E (CommMonoidWithZero.toZero.{u3} π (CommGroupWithZero.toCommMonoidWithZero.{u3} π (Semifield.toCommGroupWithZero.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_2))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u3, u2} π E (Semiring.toMonoidWithZero.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_2))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))) (Module.toMulActionWithZero.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) (SMulZeroClass.toSMul.{0, u2} Real E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{0, u2} Real E Real.instZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_6))))] [_inst_8 : TopologicalSpace.{u2} E] [_inst_9 : TopologicalAddGroup.{u2} E _inst_8 (AddCommGroup.toAddGroup.{u2} E _inst_4)] {p : SeminormFamily.{u3, u2, u1} π E ΞΉ _inst_2 _inst_4 _inst_5}, (WithSeminorms.{u3, u2, u1} π E ΞΉ _inst_2 _inst_4 _inst_5 _inst_1 p _inst_8) -> (LocallyConvexSpace.{0, u2} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_6 _inst_8)
+Case conversion may be inaccurate. Consider using '#align with_seminorms.to_locally_convex_space WithSeminorms.toLocallyConvexSpaceβ'. -/
+theorem WithSeminorms.toLocallyConvexSpace {p : SeminormFamily π E ΞΉ} (hp : WithSeminorms p) :
LocallyConvexSpace β E :=
by
apply of_basis_zero β E id fun s => s β p.basis_sets
@@ -694,7 +972,7 @@ theorem WithSeminorms.to_locallyConvexSpace {p : SeminormFamily π E ΞΉ} (hp :
simp_rw [Set.mem_iUnion, Set.mem_singleton_iff] at hs
rcases hs with β¨I, r, hr, rflβ©
exact convex_ball _ _ _
-#align with_seminorms.to_locally_convex_space WithSeminorms.to_locallyConvexSpace
+#align with_seminorms.to_locally_convex_space WithSeminorms.toLocallyConvexSpace
end LocallyConvexSpace
@@ -702,18 +980,26 @@ section NormedSpace
variable (π) [NormedField π] [NormedSpace β π] [SeminormedAddCommGroup E]
+/- warning: normed_space.to_locally_convex_space' -> NormedSpace.toLocallyConvexSpace' is a dubious translation:
+lean 3 declaration is
+ forall (π : Type.{u1}) {E : Type.{u2}} [_inst_1 : NormedField.{u1} π] [_inst_2 : NormedSpace.{0, u1} Real π Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))] [_inst_3 : SeminormedAddCommGroup.{u2} E] [_inst_4 : NormedSpace.{u1, u2} π E _inst_1 _inst_3] [_inst_5 : Module.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_3))] [_inst_6 : IsScalarTower.{0, u1, u2} Real π E (SMulZeroClass.toHasSmul.{0, u1} Real π (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (AddCommMonoid.toAddMonoid.{u1} π (AddCommGroup.toAddCommMonoid.{u1} π (SeminormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))))) (SMulWithZero.toSmulZeroClass.{0, u1} Real π (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real (Ring.toSemiring.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField)))))))) (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (AddCommMonoid.toAddMonoid.{u1} π (AddCommGroup.toAddCommMonoid.{u1} π (SeminormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real π (Semiring.toMonoidWithZero.{0} Real (Ring.toSemiring.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField))))) (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (AddCommMonoid.toAddMonoid.{u1} π (AddCommGroup.toAddCommMonoid.{u1} π (SeminormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))))) (Module.toMulActionWithZero.{0, u1} Real π (Ring.toSemiring.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField)))) (AddCommGroup.toAddCommMonoid.{u1} π (SeminormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))) (NormedSpace.toModule.{0, u1} Real π Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) _inst_2))))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_3))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_3))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_3)) (NormedSpace.toModule.{u1, u2} π E _inst_1 _inst_3 _inst_4))))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_3))))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_3))))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_3)) _inst_5))))], LocallyConvexSpace.{0, u2} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_3)) _inst_5 (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_3)))
+but is expected to have type
+ forall (π : Type.{u2}) {E : Type.{u1}} [_inst_1 : NormedField.{u2} π] [_inst_2 : NormedSpace.{0, u2} Real π Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1)))))] [_inst_3 : SeminormedAddCommGroup.{u1} E] [_inst_4 : NormedSpace.{u2, u1} π E _inst_1 _inst_3] [_inst_5 : Module.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_3))] [_inst_6 : IsScalarTower.{0, u2, u1} Real π E (SMulZeroClass.toSMul.{0, u2} Real π (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (SMulWithZero.toSMulZeroClass.{0, u2} Real π Real.instZeroReal (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (MulActionWithZero.toSMulWithZero.{0, u2} Real π Real.instMonoidWithZeroReal (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (Module.toMulActionWithZero.{0, u2} Real π Real.semiring (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))))))) (NormedSpace.toModule.{0, u2} Real π Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))))) _inst_2))))) (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_3)))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_3)))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_3)))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_3)) (NormedSpace.toModule.{u2, u1} π E _inst_1 _inst_3 _inst_4))))) (SMulZeroClass.toSMul.{0, u1} Real E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_3)))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_3)))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_3)))))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_3)) _inst_5))))], LocallyConvexSpace.{0, u1} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_3)) _inst_5 (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_3)))
+Case conversion may be inaccurate. Consider using '#align normed_space.to_locally_convex_space' NormedSpace.toLocallyConvexSpace'β'. -/
/-- Not an instance since `π` can't be inferred. See `normed_space.to_locally_convex_space` for a
slightly weaker instance version. -/
-theorem NormedSpace.to_locally_convex_space' [NormedSpace π E] [Module β E] [IsScalarTower β π E] :
+theorem NormedSpace.toLocallyConvexSpace' [NormedSpace π E] [Module β E] [IsScalarTower β π E] :
LocallyConvexSpace β E :=
- (norm_withSeminorms π E).to_locallyConvexSpace
-#align normed_space.to_locally_convex_space' NormedSpace.to_locally_convex_space'
+ (norm_withSeminorms π E).toLocallyConvexSpace
+#align normed_space.to_locally_convex_space' NormedSpace.toLocallyConvexSpace'
+#print NormedSpace.toLocallyConvexSpace /-
/-- See `normed_space.to_locally_convex_space'` for a slightly stronger version which is not an
instance. -/
-instance NormedSpace.to_locallyConvexSpace [NormedSpace β E] : LocallyConvexSpace β E :=
- NormedSpace.to_locally_convex_space' β
-#align normed_space.to_locally_convex_space NormedSpace.to_locallyConvexSpace
+instance NormedSpace.toLocallyConvexSpace [NormedSpace β E] : LocallyConvexSpace β E :=
+ NormedSpace.toLocallyConvexSpace' β
+#align normed_space.to_locally_convex_space NormedSpace.toLocallyConvexSpace
+-/
end NormedSpace
@@ -725,16 +1011,30 @@ variable [NormedField πβ] [AddCommGroup F] [Module πβ F]
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
+#print SeminormFamily.comp /-
/-- The family of seminorms obtained by composing each seminorm by a linear map. -/
def SeminormFamily.comp (q : SeminormFamily πβ F ΞΉ) (f : E βββ[Οββ] F) : SeminormFamily π E ΞΉ :=
fun i => (q i).comp f
#align seminorm_family.comp SeminormFamily.comp
+-/
+/- warning: seminorm_family.comp_apply -> SeminormFamily.comp_apply is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {πβ : Type.{u2}} {E : Type.{u3}} {F : Type.{u4}} {ΞΉ : Type.{u5}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u3} E] [_inst_3 : Module.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] [_inst_4 : NormedField.{u2} πβ] [_inst_5 : AddCommGroup.{u4} F] [_inst_6 : Module.{u2, u4} πβ F (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)] {Οββ : RingHom.{u1, u2} π πβ (NonAssocRing.toNonAssocSemiring.{u1} π (Ring.toNonAssocRing.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} πβ (Ring.toNonAssocRing.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))))} [_inst_7 : RingHomIsometric.{u1, u2} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) (NormedField.toHasNorm.{u1} π _inst_1) (NormedField.toHasNorm.{u2} πβ _inst_4) Οββ] (q : SeminormFamily.{u2, u4, u5} πβ F ΞΉ _inst_4 _inst_5 _inst_6) (i : ΞΉ) (f : LinearMap.{u1, u2, u3, u4} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5) _inst_3 _inst_6), Eq.{succ u3} (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) (SeminormFamily.comp.{u1, u2, u3, u4, u5} π πβ E F ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 Οββ _inst_7 q f i) (Seminorm.comp.{u1, u2, u3, u4} π πβ E F (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (SeminormedCommRing.toSemiNormedRing.{u2} πβ (NormedCommRing.toSeminormedCommRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4))) Οββ _inst_7 _inst_2 _inst_5 _inst_3 _inst_6 (q i) f)
+but is expected to have type
+ forall {π : Type.{u2}} {πβ : Type.{u5}} {E : Type.{u1}} {F : Type.{u4}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u2} π] [_inst_2 : AddCommGroup.{u1} E] [_inst_3 : Module.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2)] [_inst_4 : NormedField.{u5} πβ] [_inst_5 : AddCommGroup.{u4} F] [_inst_6 : Module.{u5, u4} πβ F (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)] {Οββ : RingHom.{u2, u5} π πβ (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (Semiring.toNonAssocSemiring.{u5} πβ (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ _inst_4)))))} [_inst_7 : RingHomIsometric.{u2, u5} π πβ (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ _inst_4)))) (NormedField.toNorm.{u2} π _inst_1) (NormedField.toNorm.{u5} πβ _inst_4) Οββ] (q : SeminormFamily.{u5, u4, u3} πβ F ΞΉ _inst_4 _inst_5 _inst_6) (i : ΞΉ) (f : LinearMap.{u2, u5, u1, u4} π πβ (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ _inst_4)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5) _inst_3 _inst_6), Eq.{succ u1} (Seminorm.{u2, u1} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))) (AddCommGroup.toAddGroup.{u1} E _inst_2) (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3))))) (SeminormFamily.comp.{u2, u5, u1, u4, u3} π πβ E F ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 Οββ _inst_7 q f i) (Seminorm.comp.{u2, u5, u1, u4} π πβ E F (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))) (SeminormedCommRing.toSeminormedRing.{u5} πβ (NormedCommRing.toSeminormedCommRing.{u5} πβ (NormedField.toNormedCommRing.{u5} πβ _inst_4))) Οββ _inst_7 _inst_2 _inst_5 _inst_3 _inst_6 (q i) f)
+Case conversion may be inaccurate. Consider using '#align seminorm_family.comp_apply SeminormFamily.comp_applyβ'. -/
theorem SeminormFamily.comp_apply (q : SeminormFamily πβ F ΞΉ) (i : ΞΉ) (f : E βββ[Οββ] F) :
q.comp f i = (q i).comp f :=
rfl
#align seminorm_family.comp_apply SeminormFamily.comp_apply
+/- warning: seminorm_family.finset_sup_comp -> SeminormFamily.finset_sup_comp is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {πβ : Type.{u2}} {E : Type.{u3}} {F : Type.{u4}} {ΞΉ : Type.{u5}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u3} E] [_inst_3 : Module.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] [_inst_4 : NormedField.{u2} πβ] [_inst_5 : AddCommGroup.{u4} F] [_inst_6 : Module.{u2, u4} πβ F (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)] {Οββ : RingHom.{u1, u2} π πβ (NonAssocRing.toNonAssocSemiring.{u1} π (Ring.toNonAssocRing.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} πβ (Ring.toNonAssocRing.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))))} [_inst_7 : RingHomIsometric.{u1, u2} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) (NormedField.toHasNorm.{u1} π _inst_1) (NormedField.toHasNorm.{u2} πβ _inst_4) Οββ] (q : SeminormFamily.{u2, u4, u5} πβ F ΞΉ _inst_4 _inst_5 _inst_6) (s : Finset.{u5} ΞΉ) (f : LinearMap.{u1, u2, u3, u4} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5) _inst_3 _inst_6), Eq.{succ u3} (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) (Seminorm.comp.{u1, u2, u3, u4} π πβ E F (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (SeminormedCommRing.toSemiNormedRing.{u2} πβ (NormedCommRing.toSeminormedCommRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4))) Οββ _inst_7 _inst_2 _inst_5 _inst_3 _inst_6 (Finset.sup.{u4, u5} (Seminorm.{u2, u4} πβ F (SeminormedCommRing.toSemiNormedRing.{u2} πβ (NormedCommRing.toSeminormedCommRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4))) (AddCommGroup.toAddGroup.{u4} F _inst_5) (SMulZeroClass.toHasSmul.{u2, u4} πβ F (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)))) (SMulWithZero.toSmulZeroClass.{u2, u4} πβ F (MulZeroClass.toHasZero.{u2} πβ (MulZeroOneClass.toMulZeroClass.{u2} πβ (MonoidWithZero.toMulZeroOneClass.{u2} πβ (Semiring.toMonoidWithZero.{u2} πβ (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)))) (MulActionWithZero.toSMulWithZero.{u2, u4} πβ F (Semiring.toMonoidWithZero.{u2} πβ (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)))) (Module.toMulActionWithZero.{u2, u4} πβ F (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5) _inst_6))))) ΞΉ (Seminorm.semilatticeSup.{u2, u4} πβ F (SeminormedCommRing.toSemiNormedRing.{u2} πβ (NormedCommRing.toSeminormedCommRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4))) (AddCommGroup.toAddGroup.{u4} F _inst_5) (SMulZeroClass.toHasSmul.{u2, u4} πβ F (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)))) (SMulWithZero.toSmulZeroClass.{u2, u4} πβ F (MulZeroClass.toHasZero.{u2} πβ (MulZeroOneClass.toMulZeroClass.{u2} πβ (MonoidWithZero.toMulZeroOneClass.{u2} πβ (Semiring.toMonoidWithZero.{u2} πβ (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)))) (MulActionWithZero.toSMulWithZero.{u2, u4} πβ F (Semiring.toMonoidWithZero.{u2} πβ (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4))))) (AddZeroClass.toHasZero.{u4} F (AddMonoid.toAddZeroClass.{u4} F (AddCommMonoid.toAddMonoid.{u4} F (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)))) (Module.toMulActionWithZero.{u2, u4} πβ F (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5) _inst_6))))) (Seminorm.orderBot.{u2, u4} πβ F (SeminormedCommRing.toSemiNormedRing.{u2} πβ (NormedCommRing.toSeminormedCommRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4))) _inst_5 _inst_6) s q) f) (Finset.sup.{u3, u5} (Seminorm.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) ΞΉ (Seminorm.semilatticeSup.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (AddCommGroup.toAddGroup.{u3} E _inst_2) (SMulZeroClass.toHasSmul.{u1, u3} π E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) _inst_3))))) (Seminorm.orderBot.{u1, u3} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) _inst_2 _inst_3) s (SeminormFamily.comp.{u1, u2, u3, u4, u5} π πβ E F ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 Οββ _inst_7 q f))
+but is expected to have type
+ forall {π : Type.{u2}} {πβ : Type.{u5}} {E : Type.{u1}} {F : Type.{u4}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u2} π] [_inst_2 : AddCommGroup.{u1} E] [_inst_3 : Module.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2)] [_inst_4 : NormedField.{u5} πβ] [_inst_5 : AddCommGroup.{u4} F] [_inst_6 : Module.{u5, u4} πβ F (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)] {Οββ : RingHom.{u2, u5} π πβ (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (Semiring.toNonAssocSemiring.{u5} πβ (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ _inst_4)))))} [_inst_7 : RingHomIsometric.{u2, u5} π πβ (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ _inst_4)))) (NormedField.toNorm.{u2} π _inst_1) (NormedField.toNorm.{u5} πβ _inst_4) Οββ] (q : SeminormFamily.{u5, u4, u3} πβ F ΞΉ _inst_4 _inst_5 _inst_6) (s : Finset.{u3} ΞΉ) (f : LinearMap.{u2, u5, u1, u4} π πβ (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ _inst_4)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5) _inst_3 _inst_6), Eq.{succ u1} (Seminorm.{u2, u1} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))) (AddCommGroup.toAddGroup.{u1} E _inst_2) (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (MonoidWithZero.toZero.{u2} π (Semiring.toMonoidWithZero.{u2} π (Ring.toSemiring.{u2} π (SeminormedRing.toRing.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (Ring.toSemiring.{u2} π (SeminormedRing.toRing.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π E (Ring.toSemiring.{u2} π (SeminormedRing.toRing.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3))))) (Seminorm.comp.{u2, u5, u1, u4} π πβ E F (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))) (SeminormedCommRing.toSeminormedRing.{u5} πβ (NormedCommRing.toSeminormedCommRing.{u5} πβ (NormedField.toNormedCommRing.{u5} πβ _inst_4))) Οββ _inst_7 _inst_2 _inst_5 _inst_3 _inst_6 (Finset.sup.{u4, u3} (Seminorm.{u5, u4} πβ F (SeminormedCommRing.toSeminormedRing.{u5} πβ (NormedCommRing.toSeminormedCommRing.{u5} πβ (NormedField.toNormedCommRing.{u5} πβ _inst_4))) (AddCommGroup.toAddGroup.{u4} F _inst_5) (SMulZeroClass.toSMul.{u5, u4} πβ F (NegZeroClass.toZero.{u4} F (SubNegZeroMonoid.toNegZeroClass.{u4} F (SubtractionMonoid.toSubNegZeroMonoid.{u4} F (SubtractionCommMonoid.toSubtractionMonoid.{u4} F (AddCommGroup.toDivisionAddCommMonoid.{u4} F _inst_5))))) (SMulWithZero.toSMulZeroClass.{u5, u4} πβ F (CommMonoidWithZero.toZero.{u5} πβ (CommGroupWithZero.toCommMonoidWithZero.{u5} πβ (Semifield.toCommGroupWithZero.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ _inst_4))))) (NegZeroClass.toZero.{u4} F (SubNegZeroMonoid.toNegZeroClass.{u4} F (SubtractionMonoid.toSubNegZeroMonoid.{u4} F (SubtractionCommMonoid.toSubtractionMonoid.{u4} F (AddCommGroup.toDivisionAddCommMonoid.{u4} F _inst_5))))) (MulActionWithZero.toSMulWithZero.{u5, u4} πβ F (Semiring.toMonoidWithZero.{u5} πβ (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ _inst_4))))) (NegZeroClass.toZero.{u4} F (SubNegZeroMonoid.toNegZeroClass.{u4} F (SubtractionMonoid.toSubNegZeroMonoid.{u4} F (SubtractionCommMonoid.toSubtractionMonoid.{u4} F (AddCommGroup.toDivisionAddCommMonoid.{u4} F _inst_5))))) (Module.toMulActionWithZero.{u5, u4} πβ F (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5) _inst_6))))) ΞΉ (Seminorm.instSemilatticeSup.{u5, u4} πβ F (SeminormedCommRing.toSeminormedRing.{u5} πβ (NormedCommRing.toSeminormedCommRing.{u5} πβ (NormedField.toNormedCommRing.{u5} πβ _inst_4))) (AddCommGroup.toAddGroup.{u4} F _inst_5) (SMulZeroClass.toSMul.{u5, u4} πβ F (NegZeroClass.toZero.{u4} F (SubNegZeroMonoid.toNegZeroClass.{u4} F (SubtractionMonoid.toSubNegZeroMonoid.{u4} F (SubtractionCommMonoid.toSubtractionMonoid.{u4} F (AddCommGroup.toDivisionAddCommMonoid.{u4} F _inst_5))))) (SMulWithZero.toSMulZeroClass.{u5, u4} πβ F (CommMonoidWithZero.toZero.{u5} πβ (CommGroupWithZero.toCommMonoidWithZero.{u5} πβ (Semifield.toCommGroupWithZero.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ _inst_4))))) (NegZeroClass.toZero.{u4} F (SubNegZeroMonoid.toNegZeroClass.{u4} F (SubtractionMonoid.toSubNegZeroMonoid.{u4} F (SubtractionCommMonoid.toSubtractionMonoid.{u4} F (AddCommGroup.toDivisionAddCommMonoid.{u4} F _inst_5))))) (MulActionWithZero.toSMulWithZero.{u5, u4} πβ F (Semiring.toMonoidWithZero.{u5} πβ (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ _inst_4))))) (NegZeroClass.toZero.{u4} F (SubNegZeroMonoid.toNegZeroClass.{u4} F (SubtractionMonoid.toSubNegZeroMonoid.{u4} F (SubtractionCommMonoid.toSubtractionMonoid.{u4} F (AddCommGroup.toDivisionAddCommMonoid.{u4} F _inst_5))))) (Module.toMulActionWithZero.{u5, u4} πβ F (DivisionSemiring.toSemiring.{u5} πβ (Semifield.toDivisionSemiring.{u5} πβ (Field.toSemifield.{u5} πβ (NormedField.toField.{u5} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5) _inst_6))))) (Seminorm.instOrderBot.{u5, u4} πβ F (SeminormedCommRing.toSeminormedRing.{u5} πβ (NormedCommRing.toSeminormedCommRing.{u5} πβ (NormedField.toNormedCommRing.{u5} πβ _inst_4))) _inst_5 _inst_6) s q) f) (Finset.sup.{u1, u3} (Seminorm.{u2, u1} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))) (AddCommGroup.toAddGroup.{u1} E _inst_2) (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3))))) ΞΉ (Seminorm.instSemilatticeSup.{u2, u1} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))) (AddCommGroup.toAddGroup.{u1} E _inst_2) (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3))))) (Seminorm.instOrderBot.{u2, u1} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))) _inst_2 _inst_3) s (SeminormFamily.comp.{u2, u5, u1, u4, u3} π πβ E F ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 Οββ _inst_7 q f))
+Case conversion may be inaccurate. Consider using '#align seminorm_family.finset_sup_comp SeminormFamily.finset_sup_compβ'. -/
theorem SeminormFamily.finset_sup_comp (q : SeminormFamily πβ F ΞΉ) (s : Finset ΞΉ)
(f : E βββ[Οββ] F) : (s.sup q).comp f = s.sup (q.comp f) :=
by
@@ -745,6 +1045,12 @@ theorem SeminormFamily.finset_sup_comp (q : SeminormFamily πβ F ΞΉ) (s : Fi
variable [TopologicalSpace F] [TopologicalAddGroup F]
+/- warning: linear_map.with_seminorms_induced -> LinearMap.withSeminorms_induced is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {πβ : Type.{u2}} {E : Type.{u3}} {F : Type.{u4}} {ΞΉ : Type.{u5}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u3} E] [_inst_3 : Module.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] [_inst_4 : NormedField.{u2} πβ] [_inst_5 : AddCommGroup.{u4} F] [_inst_6 : Module.{u2, u4} πβ F (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)] {Οββ : RingHom.{u1, u2} π πβ (NonAssocRing.toNonAssocSemiring.{u1} π (Ring.toNonAssocRing.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} πβ (Ring.toNonAssocRing.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))))} [_inst_7 : RingHomIsometric.{u1, u2} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) (NormedField.toHasNorm.{u1} π _inst_1) (NormedField.toHasNorm.{u2} πβ _inst_4) Οββ] [_inst_8 : TopologicalSpace.{u4} F] [_inst_9 : TopologicalAddGroup.{u4} F _inst_8 (AddCommGroup.toAddGroup.{u4} F _inst_5)] [hΞΉ : Nonempty.{succ u5} ΞΉ] {q : SeminormFamily.{u2, u4, u5} πβ F ΞΉ _inst_4 _inst_5 _inst_6}, (WithSeminorms.{u2, u4, u5} πβ F ΞΉ _inst_4 _inst_5 _inst_6 hΞΉ q _inst_8) -> (forall (f : LinearMap.{u1, u2, u3, u4} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5) _inst_3 _inst_6), WithSeminorms.{u1, u3, u5} π E ΞΉ _inst_1 _inst_2 _inst_3 hΞΉ (SeminormFamily.comp.{u1, u2, u3, u4, u5} π πβ E F ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 Οββ _inst_7 q f) (TopologicalSpace.induced.{u3, u4} E F (coeFn.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (LinearMap.{u1, u2, u3, u4} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5) _inst_3 _inst_6) (fun (_x : LinearMap.{u1, u2, u3, u4} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5) _inst_3 _inst_6) => E -> F) (LinearMap.hasCoeToFun.{u1, u2, u3, u4} π πβ E F (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5) _inst_3 _inst_6 Οββ) f) (inferInstance.{succ u4} (TopologicalSpace.{u4} F) _inst_8)))
+but is expected to have type
+ forall {π : Type.{u2}} {πβ : Type.{u4}} {E : Type.{u1}} {F : Type.{u3}} {ΞΉ : Type.{u5}} [_inst_1 : NormedField.{u2} π] [_inst_2 : AddCommGroup.{u1} E] [_inst_3 : Module.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2)] [_inst_4 : NormedField.{u4} πβ] [_inst_5 : AddCommGroup.{u3} F] [_inst_6 : Module.{u4, u3} πβ F (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F _inst_5)] {Οββ : RingHom.{u2, u4} π πβ (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (Semiring.toNonAssocSemiring.{u4} πβ (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4)))))} [_inst_7 : RingHomIsometric.{u2, u4} π πβ (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4)))) (NormedField.toNorm.{u2} π _inst_1) (NormedField.toNorm.{u4} πβ _inst_4) Οββ] [_inst_8 : TopologicalSpace.{u3} F] [_inst_9 : TopologicalAddGroup.{u3} F _inst_8 (AddCommGroup.toAddGroup.{u3} F _inst_5)] [hΞΉ : Nonempty.{succ u5} ΞΉ] {q : SeminormFamily.{u4, u3, u5} πβ F ΞΉ _inst_4 _inst_5 _inst_6}, (WithSeminorms.{u4, u3, u5} πβ F ΞΉ _inst_4 _inst_5 _inst_6 hΞΉ q _inst_8) -> (forall (f : LinearMap.{u2, u4, u1, u3} π πβ (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_5) _inst_3 _inst_6), WithSeminorms.{u2, u1, u5} π E ΞΉ _inst_1 _inst_2 _inst_3 hΞΉ (SeminormFamily.comp.{u2, u4, u1, u3, u5} π πβ E F ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 Οββ _inst_7 q f) (TopologicalSpace.induced.{u1, u3} E F (FunLike.coe.{max (succ u1) (succ u3), succ u1, succ u3} (LinearMap.{u2, u4, u1, u3} π πβ (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_5) _inst_3 _inst_6) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => F) _x) (LinearMap.instFunLikeLinearMap.{u2, u4, u1, u3} π πβ E F (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_5) _inst_3 _inst_6 Οββ) f) (inferInstance.{succ u3} (TopologicalSpace.{u3} F) _inst_8)))
+Case conversion may be inaccurate. Consider using '#align linear_map.with_seminorms_induced LinearMap.withSeminorms_inducedβ'. -/
theorem LinearMap.withSeminorms_induced [hΞΉ : Nonempty ΞΉ] {q : SeminormFamily πβ F ΞΉ}
(hq : WithSeminorms q) (f : E βββ[Οββ] F) :
@WithSeminorms π E ΞΉ _ _ _ _ (q.comp f) (induced f inferInstance) :=
@@ -757,6 +1063,12 @@ theorem LinearMap.withSeminorms_induced [hΞΉ : Nonempty ΞΉ] {q : SeminormFamily
exact Filter.comap_comap
#align linear_map.with_seminorms_induced LinearMap.withSeminorms_induced
+/- warning: inducing.with_seminorms -> Inducing.withSeminorms is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {πβ : Type.{u2}} {E : Type.{u3}} {F : Type.{u4}} {ΞΉ : Type.{u5}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u3} E] [_inst_3 : Module.{u1, u3} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2)] [_inst_4 : NormedField.{u2} πβ] [_inst_5 : AddCommGroup.{u4} F] [_inst_6 : Module.{u2, u4} πβ F (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5)] {Οββ : RingHom.{u1, u2} π πβ (NonAssocRing.toNonAssocSemiring.{u1} π (Ring.toNonAssocRing.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (NonAssocRing.toNonAssocSemiring.{u2} πβ (Ring.toNonAssocRing.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))))} [_inst_7 : RingHomIsometric.{u1, u2} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) (NormedField.toHasNorm.{u1} π _inst_1) (NormedField.toHasNorm.{u2} πβ _inst_4) Οββ] [_inst_8 : TopologicalSpace.{u4} F] [_inst_9 : TopologicalAddGroup.{u4} F _inst_8 (AddCommGroup.toAddGroup.{u4} F _inst_5)] [hΞΉ : Nonempty.{succ u5} ΞΉ] {q : SeminormFamily.{u2, u4, u5} πβ F ΞΉ _inst_4 _inst_5 _inst_6}, (WithSeminorms.{u2, u4, u5} πβ F ΞΉ _inst_4 _inst_5 _inst_6 hΞΉ q _inst_8) -> (forall [_inst_10 : TopologicalSpace.{u3} E] {f : LinearMap.{u1, u2, u3, u4} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5) _inst_3 _inst_6}, (Inducing.{u3, u4} E F _inst_10 _inst_8 (coeFn.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (LinearMap.{u1, u2, u3, u4} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5) _inst_3 _inst_6) (fun (_x : LinearMap.{u1, u2, u3, u4} π πβ (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5) _inst_3 _inst_6) => E -> F) (LinearMap.hasCoeToFun.{u1, u2, u3, u4} π πβ E F (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (Ring.toSemiring.{u2} πβ (NormedRing.toRing.{u2} πβ (NormedCommRing.toNormedRing.{u2} πβ (NormedField.toNormedCommRing.{u2} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_2) (AddCommGroup.toAddCommMonoid.{u4} F _inst_5) _inst_3 _inst_6 Οββ) f)) -> (WithSeminorms.{u1, u3, u5} π E ΞΉ _inst_1 _inst_2 _inst_3 hΞΉ (SeminormFamily.comp.{u1, u2, u3, u4, u5} π πβ E F ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 Οββ _inst_7 q f) _inst_10))
+but is expected to have type
+ forall {π : Type.{u1}} {πβ : Type.{u4}} {E : Type.{u2}} {F : Type.{u3}} {ΞΉ : Type.{u5}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : NormedField.{u4} πβ] [_inst_5 : AddCommGroup.{u3} F] [_inst_6 : Module.{u4, u3} πβ F (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F _inst_5)] {Οββ : RingHom.{u1, u4} π πβ (Semiring.toNonAssocSemiring.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (Semiring.toNonAssocSemiring.{u4} πβ (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4)))))} [_inst_7 : RingHomIsometric.{u1, u4} π πβ (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4)))) (NormedField.toNorm.{u1} π _inst_1) (NormedField.toNorm.{u4} πβ _inst_4) Οββ] [_inst_8 : TopologicalSpace.{u3} F] [_inst_9 : TopologicalAddGroup.{u3} F _inst_8 (AddCommGroup.toAddGroup.{u3} F _inst_5)] [hΞΉ : Nonempty.{succ u5} ΞΉ] {q : SeminormFamily.{u4, u3, u5} πβ F ΞΉ _inst_4 _inst_5 _inst_6}, (WithSeminorms.{u4, u3, u5} πβ F ΞΉ _inst_4 _inst_5 _inst_6 hΞΉ q _inst_8) -> (forall [_inst_10 : TopologicalSpace.{u2} E] {f : LinearMap.{u1, u4, u2, u3} π πβ (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_5) _inst_3 _inst_6}, (Inducing.{u2, u3} E F _inst_10 _inst_8 (FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (LinearMap.{u1, u4, u2, u3} π πβ (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4)))) Οββ E F (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_5) _inst_3 _inst_6) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => F) _x) (LinearMap.instFunLikeLinearMap.{u1, u4, u2, u3} π πβ E F (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_5) _inst_3 _inst_6 Οββ) f)) -> (WithSeminorms.{u1, u2, u5} π E ΞΉ _inst_1 _inst_2 _inst_3 hΞΉ (SeminormFamily.comp.{u1, u4, u2, u3, u5} π πβ E F ΞΉ _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 Οββ _inst_7 q f) _inst_10))
+Case conversion may be inaccurate. Consider using '#align inducing.with_seminorms Inducing.withSeminormsβ'. -/
theorem Inducing.withSeminorms [hΞΉ : Nonempty ΞΉ] {q : SeminormFamily πβ F ΞΉ} (hq : WithSeminorms q)
[TopologicalSpace E] {f : E βββ[Οββ] F} (hf : Inducing f) : WithSeminorms (q.comp f) :=
by
@@ -774,6 +1086,12 @@ variable {p : SeminormFamily π E ΞΉ}
variable [UniformSpace E] [UniformAddGroup E]
+/- warning: with_seminorms.first_countable -> WithSeminorms.first_countable is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u3} ΞΉ] [_inst_5 : Countable.{succ u3} ΞΉ] {p : SeminormFamily.{u1, u2, u3} π E ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2 _inst_3} [_inst_6 : UniformSpace.{u2} E] [_inst_7 : UniformAddGroup.{u2} E _inst_6 (AddCommGroup.toAddGroup.{u2} E _inst_2)], (WithSeminorms.{u1, u2, u3} π E ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2 _inst_3 _inst_4 p (UniformSpace.toTopologicalSpace.{u2} E _inst_6)) -> (TopologicalSpace.FirstCountableTopology.{u2} E (UniformSpace.toTopologicalSpace.{u2} E _inst_6))
+but is expected to have type
+ forall {π : Type.{u3}} {E : Type.{u2}} {ΞΉ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u3} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u3, u2} π E (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Nonempty.{succ u1} ΞΉ] [_inst_5 : Countable.{succ u1} ΞΉ] {p : SeminormFamily.{u3, u2, u1} π E ΞΉ (NontriviallyNormedField.toNormedField.{u3} π _inst_1) _inst_2 _inst_3} [_inst_6 : UniformSpace.{u2} E] [_inst_7 : UniformAddGroup.{u2} E _inst_6 (AddCommGroup.toAddGroup.{u2} E _inst_2)], (WithSeminorms.{u3, u2, u1} π E ΞΉ (NontriviallyNormedField.toNormedField.{u3} π _inst_1) _inst_2 _inst_3 _inst_4 p (UniformSpace.toTopologicalSpace.{u2} E _inst_6)) -> (TopologicalSpace.FirstCountableTopology.{u2} E (UniformSpace.toTopologicalSpace.{u2} E _inst_6))
+Case conversion may be inaccurate. Consider using '#align with_seminorms.first_countable WithSeminorms.first_countableβ'. -/
/-- If the topology of a space is induced by a countable family of seminorms, then the topology
is first countable. -/
theorem WithSeminorms.first_countable (hp : WithSeminorms p) :
mathlib commit https://github.com/leanprover-community/mathlib/commit/33c67ae661dd8988516ff7f247b0be3018cdd952
@@ -683,7 +683,7 @@ open LocallyConvexSpace
variable [Nonempty ΞΉ] [NormedField π] [NormedSpace β π] [AddCommGroup E] [Module π E] [Module β E]
[IsScalarTower β π E] [TopologicalSpace E] [TopologicalAddGroup E]
-theorem WithSeminorms.toLocallyConvexSpace {p : SeminormFamily π E ΞΉ} (hp : WithSeminorms p) :
+theorem WithSeminorms.to_locallyConvexSpace {p : SeminormFamily π E ΞΉ} (hp : WithSeminorms p) :
LocallyConvexSpace β E :=
by
apply of_basis_zero β E id fun s => s β p.basis_sets
@@ -694,7 +694,7 @@ theorem WithSeminorms.toLocallyConvexSpace {p : SeminormFamily π E ΞΉ} (hp :
simp_rw [Set.mem_iUnion, Set.mem_singleton_iff] at hs
rcases hs with β¨I, r, hr, rflβ©
exact convex_ball _ _ _
-#align with_seminorms.to_locally_convex_space WithSeminorms.toLocallyConvexSpace
+#align with_seminorms.to_locally_convex_space WithSeminorms.to_locallyConvexSpace
end LocallyConvexSpace
@@ -704,16 +704,16 @@ variable (π) [NormedField π] [NormedSpace β π] [SeminormedAddCommGrou
/-- Not an instance since `π` can't be inferred. See `normed_space.to_locally_convex_space` for a
slightly weaker instance version. -/
-theorem NormedSpace.toLocallyConvexSpace' [NormedSpace π E] [Module β E] [IsScalarTower β π E] :
+theorem NormedSpace.to_locally_convex_space' [NormedSpace π E] [Module β E] [IsScalarTower β π E] :
LocallyConvexSpace β E :=
- (norm_withSeminorms π E).toLocallyConvexSpace
-#align normed_space.to_locally_convex_space' NormedSpace.toLocallyConvexSpace'
+ (norm_withSeminorms π E).to_locallyConvexSpace
+#align normed_space.to_locally_convex_space' NormedSpace.to_locally_convex_space'
/-- See `normed_space.to_locally_convex_space'` for a slightly stronger version which is not an
instance. -/
-instance NormedSpace.toLocallyConvexSpace [NormedSpace β E] : LocallyConvexSpace β E :=
- NormedSpace.toLocallyConvexSpace' β
-#align normed_space.to_locally_convex_space NormedSpace.toLocallyConvexSpace
+instance NormedSpace.to_locallyConvexSpace [NormedSpace β E] : LocallyConvexSpace β E :=
+ NormedSpace.to_locally_convex_space' β
+#align normed_space.to_locally_convex_space NormedSpace.to_locallyConvexSpace
end NormedSpace
mathlib commit https://github.com/leanprover-community/mathlib/commit/e3fb84046afd187b710170887195d50bada934ee
@@ -110,9 +110,9 @@ theorem basisSets_intersect (U V : Set E) (hU : U β p.basis_sets) (hV : V β
ball_finset_sup_eq_Inter _ _ _ hrβ, ball_finset_sup_eq_Inter _ _ _ hrβ]
exact
Set.subset_inter
- (Set.interα΅’β_mono' fun i hi =>
+ (Set.iInterβ_mono' fun i hi =>
β¨i, Finset.subset_union_left _ _ hi, ball_mono <| min_le_left _ _β©)
- (Set.interα΅’β_mono' fun i hi =>
+ (Set.iInterβ_mono' fun i hi =>
β¨i, Finset.subset_union_right _ _ hi, ball_mono <| min_le_right _ _β©)
#align seminorm_family.basis_sets_intersect SeminormFamily.basisSets_intersect
@@ -196,10 +196,10 @@ protected def moduleFilterBasis : ModuleFilterBasis π E
smul_right' := p.basisSets_smul_right
#align seminorm_family.module_filter_basis SeminormFamily.moduleFilterBasis
-theorem filter_eq_infα΅’ (p : SeminormFamily π E ΞΉ) :
+theorem filter_eq_iInf (p : SeminormFamily π E ΞΉ) :
p.ModuleFilterBasis.toFilterBasis.filterβ = β¨
i, (π 0).comap (p i) :=
by
- refine' le_antisymm (le_infα΅’ fun i => _) _
+ refine' le_antisymm (le_iInf fun i => _) _
Β· rw [p.module_filter_basis.to_filter_basis.has_basis.le_basis_iff
(metric.nhds_basis_ball.comap _)]
intro Ξ΅ hΞ΅
@@ -210,12 +210,12 @@ theorem filter_eq_infα΅’ (p : SeminormFamily π E ΞΉ) :
Β· rw [p.module_filter_basis.to_filter_basis.has_basis.ge_iff]
rintro U (hU : U β p.basis_sets)
rcases p.basis_sets_iff.mp hU with β¨s, r, hr, rflβ©
- rw [id, Seminorm.ball_finset_sup_eq_interα΅’ _ _ _ hr, s.Inter_mem_sets]
+ rw [id, Seminorm.ball_finset_sup_eq_iInter _ _ _ hr, s.Inter_mem_sets]
exact fun i hi =>
- Filter.mem_infα΅’_of_mem i
+ Filter.mem_iInf_of_mem i
β¨Metric.ball 0 r, Metric.ball_mem_nhds 0 hr,
Eq.subset (p i).ball_zero_eq_preimage_ball.symmβ©
-#align seminorm_family.filter_eq_infi SeminormFamily.filter_eq_infα΅’
+#align seminorm_family.filter_eq_infi SeminormFamily.filter_eq_iInf
end SeminormFamily
@@ -260,12 +260,12 @@ theorem isBounded_sup {p : ΞΉ β Seminorm π E} {q : ΞΉ' β Seminorm πβ
obtain rfl | hs' := s'.eq_empty_or_nonempty
Β· exact β¨1, β
, by simp [Seminorm.bot_eq_zero]β©
choose fβ fC hf using hf
- use s'.card β’ s'.sup fC, Finset.bunionα΅’ s' fβ
- have hs : β i : ΞΉ', i β s' β (q i).comp f β€ s'.sup fC β’ (Finset.bunionα΅’ s' fβ).sup p :=
+ use s'.card β’ s'.sup fC, Finset.biUnion s' fβ
+ have hs : β i : ΞΉ', i β s' β (q i).comp f β€ s'.sup fC β’ (Finset.biUnion s' fβ).sup p :=
by
intro i hi
refine' (hf i).trans (smul_le_smul _ (Finset.le_sup hi))
- exact Finset.sup_mono (Finset.subset_bunionα΅’_of_mem fβ hi)
+ exact Finset.sup_mono (Finset.subset_biUnion_of_mem fβ hi)
refine' (comp_mono f (finset_sup_le_sum q s')).trans _
simp_rw [β pullback_apply, AddMonoidHom.map_sum, pullback_apply]
refine' (Finset.sum_le_sum hs).trans _
@@ -447,39 +447,39 @@ theorem SeminormFamily.withSeminorms_of_hasBasis (p : SeminormFamily π E ΞΉ)
Filter.HasBasis.eq_of_same_basis h p.AddGroupFilterBasis.toFilterBasis.HasBasis
#align seminorm_family.with_seminorms_of_has_basis SeminormFamily.withSeminorms_of_hasBasis
-theorem SeminormFamily.withSeminorms_iff_nhds_eq_infα΅’ (p : SeminormFamily π E ΞΉ) :
+theorem SeminormFamily.withSeminorms_iff_nhds_eq_iInf (p : SeminormFamily π E ΞΉ) :
WithSeminorms p β (π 0 : Filter E) = β¨
i, (π 0).comap (p i) :=
by
rw [β p.filter_eq_infi]
refine' β¨fun h => _, p.with_seminorms_of_nhdsβ©
rw [h.topology_eq_with_seminorms]
exact AddGroupFilterBasis.nhds_zero_eq _
-#align seminorm_family.with_seminorms_iff_nhds_eq_infi SeminormFamily.withSeminorms_iff_nhds_eq_infα΅’
+#align seminorm_family.with_seminorms_iff_nhds_eq_infi SeminormFamily.withSeminorms_iff_nhds_eq_iInf
theorem WithSeminorms.continuous_seminorm [NontriviallyNormedField π] [Module π E]
[ContinuousConstSMul π E] {p : SeminormFamily π E ΞΉ} (hp : WithSeminorms p) (i : ΞΉ) :
Continuous (p i) := by
refine' Seminorm.continuous one_pos _
rw [p.with_seminorms_iff_nhds_eq_infi.mp hp, ball_zero_eq_preimage_ball]
- exact Filter.mem_infα΅’_of_mem i (Filter.preimage_mem_comap <| Metric.ball_mem_nhds _ one_pos)
+ exact Filter.mem_iInf_of_mem i (Filter.preimage_mem_comap <| Metric.ball_mem_nhds _ one_pos)
#align with_seminorms.continuous_seminorm WithSeminorms.continuous_seminorm
/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `congrm #[[expr Β«expr = Β»(_, Β«exprβ¨
, Β»((i), _))]] -/
/-- The topology induced by a family of seminorms is exactly the infimum of the ones induced by
each seminorm individually. We express this as a characterization of `with_seminorms p`. -/
-theorem SeminormFamily.withSeminorms_iff_topologicalSpace_eq_infα΅’ (p : SeminormFamily π E ΞΉ) :
+theorem SeminormFamily.withSeminorms_iff_topologicalSpace_eq_iInf (p : SeminormFamily π E ΞΉ) :
WithSeminorms p β
t =
β¨
i, (p i).toAddGroupSeminorm.toSeminormedAddCommGroup.toUniformSpace.toTopologicalSpace :=
by
rw [p.with_seminorms_iff_nhds_eq_infi,
- TopologicalAddGroup.ext_iff inferInstance (topologicalAddGroup_infα΅’ fun i => inferInstance),
- nhds_infα΅’]
+ TopologicalAddGroup.ext_iff inferInstance (topologicalAddGroup_iInf fun i => inferInstance),
+ nhds_iInf]
trace
"./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `congrm #[[expr Β«expr = Β»(_, Β«exprβ¨
, Β»((i), _))]]"
exact @comap_norm_nhds_zero _ (p i).toAddGroupSeminorm.toSeminormedAddGroup
all_goals infer_instance
-#align seminorm_family.with_seminorms_iff_topological_space_eq_infi SeminormFamily.withSeminorms_iff_topologicalSpace_eq_infα΅’
+#align seminorm_family.with_seminorms_iff_topological_space_eq_infi SeminormFamily.withSeminorms_iff_topologicalSpace_eq_iInf
omit t
@@ -487,18 +487,18 @@ omit t
/-- The uniform structure induced by a family of seminorms is exactly the infimum of the ones
induced by each seminorm individually. We express this as a characterization of
`with_seminorms p`. -/
-theorem SeminormFamily.withSeminorms_iff_uniformSpace_eq_infα΅’ [u : UniformSpace E]
+theorem SeminormFamily.withSeminorms_iff_uniformSpace_eq_iInf [u : UniformSpace E]
[UniformAddGroup E] (p : SeminormFamily π E ΞΉ) :
WithSeminorms p β u = β¨
i, (p i).toAddGroupSeminorm.toSeminormedAddCommGroup.toUniformSpace :=
by
rw [p.with_seminorms_iff_nhds_eq_infi,
- UniformAddGroup.ext_iff inferInstance (uniformAddGroup_infα΅’ fun i => inferInstance),
- toTopologicalSpace_infα΅’, nhds_infα΅’]
+ UniformAddGroup.ext_iff inferInstance (uniformAddGroup_iInf fun i => inferInstance),
+ toTopologicalSpace_iInf, nhds_iInf]
trace
"./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `congrm #[[expr Β«expr = Β»(_, Β«exprβ¨
, Β»((i), _))]]"
exact @comap_norm_nhds_zero _ (p i).toAddGroupSeminorm.toSeminormedAddGroup
all_goals infer_instance
-#align seminorm_family.with_seminorms_iff_uniform_space_eq_infi SeminormFamily.withSeminorms_iff_uniformSpace_eq_infα΅’
+#align seminorm_family.with_seminorms_iff_uniform_space_eq_infi SeminormFamily.withSeminorms_iff_uniformSpace_eq_iInf
end TopologicalAddGroup
@@ -623,7 +623,7 @@ theorem continuous_of_continuous_comp {q : SeminormFamily πβ F ΞΉ'} [Topolo
(f : E βββ[Οββ] F) (hf : β i, Continuous ((q i).comp f)) : Continuous f :=
by
refine' continuous_of_continuousAt_zero f _
- simp_rw [ContinuousAt, f.map_zero, q.with_seminorms_iff_nhds_eq_infi.mp hq, Filter.tendsto_infα΅’,
+ simp_rw [ContinuousAt, f.map_zero, q.with_seminorms_iff_nhds_eq_infi.mp hq, Filter.tendsto_iInf,
Filter.tendsto_comap_iff]
intro i
convert(hf i).ContinuousAt
@@ -690,8 +690,8 @@ theorem WithSeminorms.toLocallyConvexSpace {p : SeminormFamily π E ΞΉ} (hp :
Β· rw [hp.1, AddGroupFilterBasis.nhds_eq _, AddGroupFilterBasis.N_zero]
exact FilterBasis.hasBasis _
Β· intro s hs
- change s β Set.unionα΅’ _ at hs
- simp_rw [Set.mem_unionα΅’, Set.mem_singleton_iff] at hs
+ change s β Set.iUnion _ at hs
+ simp_rw [Set.mem_iUnion, Set.mem_singleton_iff] at hs
rcases hs with β¨I, r, hr, rflβ©
exact convex_ball _ _ _
#align with_seminorms.to_locally_convex_space WithSeminorms.toLocallyConvexSpace
@@ -751,9 +751,9 @@ theorem LinearMap.withSeminorms_induced [hΞΉ : Nonempty ΞΉ] {q : SeminormFamily
by
letI : TopologicalSpace E := induced f inferInstance
letI : TopologicalAddGroup E := topologicalAddGroup_induced f
- rw [(q.comp f).withSeminorms_iff_nhds_eq_infα΅’, nhds_induced, map_zero,
- q.with_seminorms_iff_nhds_eq_infi.mp hq, Filter.comap_infα΅’]
- refine' infα΅’_congr fun i => _
+ rw [(q.comp f).withSeminorms_iff_nhds_eq_iInf, nhds_induced, map_zero,
+ q.with_seminorms_iff_nhds_eq_infi.mp hq, Filter.comap_iInf]
+ refine' iInf_congr fun i => _
exact Filter.comap_comap
#align linear_map.with_seminorms_induced LinearMap.withSeminorms_induced
@@ -782,7 +782,7 @@ theorem WithSeminorms.first_countable (hp : WithSeminorms p) :
have : (π (0 : E)).IsCountablyGenerated :=
by
rw [p.with_seminorms_iff_nhds_eq_infi.mp hp]
- exact Filter.infα΅’.isCountablyGenerated _
+ exact Filter.iInf.isCountablyGenerated _
haveI : (uniformity E).IsCountablyGenerated := UniformAddGroup.uniformity_countably_generated
exact UniformSpace.firstCountableTopology E
#align with_seminorms.first_countable WithSeminorms.first_countable
mathlib commit https://github.com/leanprover-community/mathlib/commit/06a655b5fcfbda03502f9158bbf6c0f1400886f9
@@ -298,7 +298,7 @@ variable {p : SeminormFamily π E ΞΉ}
theorem WithSeminorms.topologicalAddGroup (hp : WithSeminorms p) : TopologicalAddGroup E :=
by
rw [hp.with_seminorms_eq]
- exact AddGroupFilterBasis.is_topological_add_group _
+ exact AddGroupFilterBasis.isTopologicalAddGroup _
#align with_seminorms.topological_add_group WithSeminorms.topologicalAddGroup
theorem WithSeminorms.hasBasis (hp : WithSeminorms p) :
@@ -432,20 +432,20 @@ variable [Nonempty ΞΉ]
include t
-theorem SeminormFamily.withSeminormsOfNhds (p : SeminormFamily π E ΞΉ)
+theorem SeminormFamily.withSeminorms_of_nhds (p : SeminormFamily π E ΞΉ)
(h : π (0 : E) = p.ModuleFilterBasis.toFilterBasis.filterβ) : WithSeminorms p :=
by
refine'
β¨TopologicalAddGroup.ext inferInstance p.add_group_filter_basis.is_topological_add_group _β©
rw [AddGroupFilterBasis.nhds_zero_eq]
exact h
-#align seminorm_family.with_seminorms_of_nhds SeminormFamily.withSeminormsOfNhds
+#align seminorm_family.with_seminorms_of_nhds SeminormFamily.withSeminorms_of_nhds
-theorem SeminormFamily.withSeminormsOfHasBasis (p : SeminormFamily π E ΞΉ)
+theorem SeminormFamily.withSeminorms_of_hasBasis (p : SeminormFamily π E ΞΉ)
(h : (π (0 : E)).HasBasis (fun s : Set E => s β p.basis_sets) id) : WithSeminorms p :=
- p.withSeminormsOfNhds <|
+ p.withSeminorms_of_nhds <|
Filter.HasBasis.eq_of_same_basis h p.AddGroupFilterBasis.toFilterBasis.HasBasis
-#align seminorm_family.with_seminorms_of_has_basis SeminormFamily.withSeminormsOfHasBasis
+#align seminorm_family.with_seminorms_of_has_basis SeminormFamily.withSeminorms_of_hasBasis
theorem SeminormFamily.withSeminorms_iff_nhds_eq_infα΅’ (p : SeminormFamily π E ΞΉ) :
WithSeminorms p β (π 0 : Filter E) = β¨
i, (π 0).comap (p i) :=
@@ -505,7 +505,7 @@ end TopologicalAddGroup
section NormedSpace
/-- The topology of a `normed_space π E` is induced by the seminorm `norm_seminorm π E`. -/
-theorem normWithSeminorms (π E) [NormedField π] [SeminormedAddCommGroup E] [NormedSpace π E] :
+theorem norm_withSeminorms (π E) [NormedField π] [SeminormedAddCommGroup E] [NormedSpace π E] :
WithSeminorms fun _ : Fin 1 => normSeminorm π E :=
by
let p : SeminormFamily π E (Fin 1) := fun _ => normSeminorm π E
@@ -525,7 +525,7 @@ theorem normWithSeminorms (π E) [NormedField π] [SeminormedAddCommGroup E]
Β· rw [Finset.sup_const h]
rw [finset.not_nonempty_iff_eq_empty.mp h, Finset.sup_empty, ball_bot _ hr]
exact Set.subset_univ _
-#align norm_with_seminorms normWithSeminorms
+#align norm_with_seminorms norm_withSeminorms
end NormedSpace
@@ -661,7 +661,7 @@ theorem cont_withSeminorms_normedSpace (F) [SeminormedAddCommGroup F] [NormedSpa
(f : E βββ[Οββ] F) (hf : β (s : Finset ΞΉ)(C : ββ₯0), (normSeminorm πβ F).comp f β€ C β’ s.sup p) :
Continuous f := by
rw [β Seminorm.isBounded_const (Fin 1)] at hf
- exact continuous_from_bounded hp (normWithSeminorms πβ F) f hf
+ exact continuous_from_bounded hp (norm_withSeminorms πβ F) f hf
#align seminorm.cont_with_seminorms_normed_space Seminorm.cont_withSeminorms_normedSpace
theorem cont_normedSpace_to_withSeminorms (E) [SeminormedAddCommGroup E] [NormedSpace π E]
@@ -669,7 +669,7 @@ theorem cont_normedSpace_to_withSeminorms (E) [SeminormedAddCommGroup E] [Normed
(f : E βββ[Οββ] F) (hf : β i : ΞΉ, β C : ββ₯0, (q i).comp f β€ C β’ normSeminorm π E) :
Continuous f := by
rw [β Seminorm.const_isBounded (Fin 1)] at hf
- exact continuous_from_bounded (normWithSeminorms π E) hq f hf
+ exact continuous_from_bounded (norm_withSeminorms π E) hq f hf
#align seminorm.cont_normed_space_to_with_seminorms Seminorm.cont_normedSpace_to_withSeminorms
end Seminorm
@@ -687,7 +687,7 @@ theorem WithSeminorms.toLocallyConvexSpace {p : SeminormFamily π E ΞΉ} (hp :
LocallyConvexSpace β E :=
by
apply of_basis_zero β E id fun s => s β p.basis_sets
- Β· rw [hp.1, AddGroupFilterBasis.nhds_eq _, AddGroupFilterBasis.n_zero]
+ Β· rw [hp.1, AddGroupFilterBasis.nhds_eq _, AddGroupFilterBasis.N_zero]
exact FilterBasis.hasBasis _
Β· intro s hs
change s β Set.unionα΅’ _ at hs
@@ -706,7 +706,7 @@ variable (π) [NormedField π] [NormedSpace β π] [SeminormedAddCommGrou
slightly weaker instance version. -/
theorem NormedSpace.toLocallyConvexSpace' [NormedSpace π E] [Module β E] [IsScalarTower β π E] :
LocallyConvexSpace β E :=
- (normWithSeminorms π E).toLocallyConvexSpace
+ (norm_withSeminorms π E).toLocallyConvexSpace
#align normed_space.to_locally_convex_space' NormedSpace.toLocallyConvexSpace'
/-- See `normed_space.to_locally_convex_space'` for a slightly stronger version which is not an
@@ -745,7 +745,7 @@ theorem SeminormFamily.finset_sup_comp (q : SeminormFamily πβ F ΞΉ) (s : Fi
variable [TopologicalSpace F] [TopologicalAddGroup F]
-theorem LinearMap.withSeminormsInduced [hΞΉ : Nonempty ΞΉ] {q : SeminormFamily πβ F ΞΉ}
+theorem LinearMap.withSeminorms_induced [hΞΉ : Nonempty ΞΉ] {q : SeminormFamily πβ F ΞΉ}
(hq : WithSeminorms q) (f : E βββ[Οββ] F) :
@WithSeminorms π E ΞΉ _ _ _ _ (q.comp f) (induced f inferInstance) :=
by
@@ -755,7 +755,7 @@ theorem LinearMap.withSeminormsInduced [hΞΉ : Nonempty ΞΉ] {q : SeminormFamily
q.with_seminorms_iff_nhds_eq_infi.mp hq, Filter.comap_infα΅’]
refine' infα΅’_congr fun i => _
exact Filter.comap_comap
-#align linear_map.with_seminorms_induced LinearMap.withSeminormsInduced
+#align linear_map.with_seminorms_induced LinearMap.withSeminorms_induced
theorem Inducing.withSeminorms [hΞΉ : Nonempty ΞΉ] {q : SeminormFamily πβ F ΞΉ} (hq : WithSeminorms q)
[TopologicalSpace E] {f : E βββ[Οββ] F} (hf : Inducing f) : WithSeminorms (q.comp f) :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/0148d455199ed64bf8eb2f493a1e7eb9211ce170
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Moritz Doll, Anatole Dedecker
! This file was ported from Lean 3 source module analysis.locally_convex.with_seminorms
-! leanprover-community/mathlib commit ce86f4e05e9a9b8da5e316b22c76ce76440c56a1
+! leanprover-community/mathlib commit b31173ee05c911d61ad6a05bd2196835c932e0ec
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -234,46 +234,41 @@ variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
-- Todo: This should be phrased entirely in terms of the von Neumann bornology.
/-- The proposition that a linear map is bounded between spaces with families of seminorms. -/
def IsBounded (p : ΞΉ β Seminorm π E) (q : ΞΉ' β Seminorm πβ F) (f : E βββ[Οββ] F) : Prop :=
- β i, β s : Finset ΞΉ, β C : ββ₯0, C β 0 β§ (q i).comp f β€ C β’ s.sup p
+ β i, β s : Finset ΞΉ, β C : ββ₯0, (q i).comp f β€ C β’ s.sup p
#align seminorm.is_bounded Seminorm.IsBounded
theorem isBounded_const (ΞΉ' : Type _) [Nonempty ΞΉ'] {p : ΞΉ β Seminorm π E} {q : Seminorm πβ F}
(f : E βββ[Οββ] F) :
- IsBounded p (fun _ : ΞΉ' => q) f β β (s : Finset ΞΉ)(C : ββ₯0), C β 0 β§ q.comp f β€ C β’ s.sup p :=
- by simp only [is_bounded, forall_const]
+ IsBounded p (fun _ : ΞΉ' => q) f β β (s : Finset ΞΉ)(C : ββ₯0), q.comp f β€ C β’ s.sup p := by
+ simp only [is_bounded, forall_const]
#align seminorm.is_bounded_const Seminorm.isBounded_const
theorem const_isBounded (ΞΉ : Type _) [Nonempty ΞΉ] {p : Seminorm π E} {q : ΞΉ' β Seminorm πβ F}
- (f : E βββ[Οββ] F) :
- IsBounded (fun _ : ΞΉ => p) q f β β i, β C : ββ₯0, C β 0 β§ (q i).comp f β€ C β’ p :=
+ (f : E βββ[Οββ] F) : IsBounded (fun _ : ΞΉ => p) q f β β i, β C : ββ₯0, (q i).comp f β€ C β’ p :=
by
constructor <;> intro h i
- Β· rcases h i with β¨s, C, hC, hβ©
- exact β¨C, hC, le_trans h (smul_le_smul (Finset.sup_le fun _ _ => le_rfl) le_rfl)β©
+ Β· rcases h i with β¨s, C, hβ©
+ exact β¨C, le_trans h (smul_le_smul (Finset.sup_le fun _ _ => le_rfl) le_rfl)β©
use {Classical.arbitrary ΞΉ}
simp only [h, Finset.sup_singleton]
#align seminorm.const_is_bounded Seminorm.const_isBounded
theorem isBounded_sup {p : ΞΉ β Seminorm π E} {q : ΞΉ' β Seminorm πβ F} {f : E βββ[Οββ] F}
(hf : IsBounded p q f) (s' : Finset ΞΉ') :
- β (C : ββ₯0)(s : Finset ΞΉ), 0 < C β§ (s'.sup q).comp f β€ C β’ s.sup p := by
+ β (C : ββ₯0)(s : Finset ΞΉ), (s'.sup q).comp f β€ C β’ s.sup p := by
classical
obtain rfl | hs' := s'.eq_empty_or_nonempty
- Β· exact β¨1, β
, zero_lt_one, by simp [Seminorm.bot_eq_zero]β©
+ Β· exact β¨1, β
, by simp [Seminorm.bot_eq_zero]β©
choose fβ fC hf using hf
use s'.card β’ s'.sup fC, Finset.bunionα΅’ s' fβ
- constructor
- Β· refine' nsmul_pos _ (ne_of_gt (Finset.Nonempty.card_pos hs'))
- cases' Finset.Nonempty.bex hs' with j hj
- exact lt_of_lt_of_le (zero_lt_iff.mpr (And.left (hf j))) (Finset.le_sup hj)
have hs : β i : ΞΉ', i β s' β (q i).comp f β€ s'.sup fC β’ (Finset.bunionα΅’ s' fβ).sup p :=
by
intro i hi
- refine' le_trans (And.right (hf i)) (smul_le_smul _ (Finset.le_sup hi))
+ refine' (hf i).trans (smul_le_smul _ (Finset.le_sup hi))
exact Finset.sup_mono (Finset.subset_bunionα΅’_of_mem fβ hi)
- refine' le_trans (comp_mono f (finset_sup_le_sum q s')) _
+ refine' (comp_mono f (finset_sup_le_sum q s')).trans _
simp_rw [β pullback_apply, AddMonoidHom.map_sum, pullback_apply]
- refine' le_trans (Finset.sum_le_sum hs) _
+ refine' (Finset.sum_le_sum hs).trans _
rw [Finset.sum_const, smul_assoc]
exact le_rfl
#align seminorm.is_bounded_sup Seminorm.isBounded_sup
@@ -649,20 +644,21 @@ theorem continuous_from_bounded {p : SeminormFamily π E ΞΉ} {q : SeminormFami
refine' continuous_of_continuous_comp hq _ fun i => Seminorm.continuous_of_continuousAt_zero _
rw [Metric.continuousAt_iff', map_zero]
intro r hr
- rcases hf i with β¨sβ, C, hC, hfβ©
- have hC' : 0 < C := hC.bot_lt
+ rcases hf i with β¨sβ, C, hfβ©
+ have hC' : 0 < C + 1 := by positivity
rw [hp.has_basis.eventually_iff]
- refine' β¨(sβ.sup p).ball 0 (r / C), p.basis_sets_mem _ (by positivity), _β©
+ refine' β¨(sβ.sup p).ball 0 (r / (C + 1)), p.basis_sets_mem _ (by positivity), _β©
simp_rw [β Metric.mem_ball, β mem_preimage, β ball_zero_eq_preimage_ball]
refine' subset.trans _ (ball_antitone hf)
- rw [ball_smul (sβ.sup p) hC']
- rfl
+ norm_cast
+ rw [β ball_smul (sβ.sup p) hC']
+ refine' ball_antitone (smul_le_smul le_rfl _)
+ simp only [le_add_iff_nonneg_right, zero_le']
#align seminorm.continuous_from_bounded Seminorm.continuous_from_bounded
theorem cont_withSeminorms_normedSpace (F) [SeminormedAddCommGroup F] [NormedSpace πβ F]
[UniformSpace E] [UniformAddGroup E] {p : ΞΉ β Seminorm π E} (hp : WithSeminorms p)
- (f : E βββ[Οββ] F)
- (hf : β (s : Finset ΞΉ)(C : ββ₯0), C β 0 β§ (normSeminorm πβ F).comp f β€ C β’ s.sup p) :
+ (f : E βββ[Οββ] F) (hf : β (s : Finset ΞΉ)(C : ββ₯0), (normSeminorm πβ F).comp f β€ C β’ s.sup p) :
Continuous f := by
rw [β Seminorm.isBounded_const (Fin 1)] at hf
exact continuous_from_bounded hp (normWithSeminorms πβ F) f hf
@@ -670,7 +666,7 @@ theorem cont_withSeminorms_normedSpace (F) [SeminormedAddCommGroup F] [NormedSpa
theorem cont_normedSpace_to_withSeminorms (E) [SeminormedAddCommGroup E] [NormedSpace π E]
[UniformSpace F] [UniformAddGroup F] {q : ΞΉ β Seminorm πβ F} (hq : WithSeminorms q)
- (f : E βββ[Οββ] F) (hf : β i : ΞΉ, β C : ββ₯0, C β 0 β§ (q i).comp f β€ C β’ normSeminorm π E) :
+ (f : E βββ[Οββ] F) (hf : β i : ΞΉ, β C : ββ₯0, (q i).comp f β€ C β’ normSeminorm π E) :
Continuous f := by
rw [β Seminorm.const_isBounded (Fin 1)] at hf
exact continuous_from_bounded (normWithSeminorms π E) hq f hf
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce86f4e05e9a9b8da5e316b22c76ce76440c56a1
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Moritz Doll, Anatole Dedecker
! This file was ported from Lean 3 source module analysis.locally_convex.with_seminorms
-! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
+! leanprover-community/mathlib commit ce86f4e05e9a9b8da5e316b22c76ce76440c56a1
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -391,6 +391,42 @@ theorem WithSeminorms.separating_iff_t1 (hp : WithSeminorms p) :
end Topology
+section Tendsto
+
+variable [NormedField π] [AddCommGroup E] [Module π E] [Nonempty ΞΉ] [TopologicalSpace E]
+
+variable {p : SeminormFamily π E ΞΉ}
+
+/-- Convergence along filters for `with_seminorms`.
+
+Variant with `finset.sup`. -/
+theorem WithSeminorms.tendsto_nhds' (hp : WithSeminorms p) (u : F β E) {f : Filter F} (yβ : E) :
+ Filter.Tendsto u f (π yβ) β β (s : Finset ΞΉ) (Ξ΅), 0 < Ξ΅ β βαΆ x in f, s.sup p (u x - yβ) < Ξ΅ :=
+ by simp [hp.has_basis_ball.tendsto_right_iff]
+#align with_seminorms.tendsto_nhds' WithSeminorms.tendsto_nhds'
+
+/-- Convergence along filters for `with_seminorms`. -/
+theorem WithSeminorms.tendsto_nhds (hp : WithSeminorms p) (u : F β E) {f : Filter F} (yβ : E) :
+ Filter.Tendsto u f (π yβ) β β i Ξ΅, 0 < Ξ΅ β βαΆ x in f, p i (u x - yβ) < Ξ΅ :=
+ by
+ rw [hp.tendsto_nhds' u yβ]
+ exact
+ β¨fun h i => by simpa only [Finset.sup_singleton] using h {i}, fun h s Ξ΅ hΞ΅ =>
+ (s.eventually_all.2 fun i _ => h i Ξ΅ hΞ΅).mono fun _ => finset_sup_apply_lt hΞ΅β©
+#align with_seminorms.tendsto_nhds WithSeminorms.tendsto_nhds
+
+variable [SemilatticeSup F] [Nonempty F]
+
+/-- Limit `β β` for `with_seminorms`. -/
+theorem WithSeminorms.tendsto_nhds_atTop (hp : WithSeminorms p) (u : F β E) (yβ : E) :
+ Filter.Tendsto u Filter.atTop (π yβ) β β i Ξ΅, 0 < Ξ΅ β β xβ, β x, xβ β€ x β p i (u x - yβ) < Ξ΅ :=
+ by
+ rw [hp.tendsto_nhds u yβ]
+ exact forallβ_congr fun _ _ _ => Filter.eventually_atTop
+#align with_seminorms.tendsto_nhds_at_top WithSeminorms.tendsto_nhds_atTop
+
+end Tendsto
+
section TopologicalAddGroup
variable [NormedField π] [AddCommGroup E] [Module π E]
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce7e9d53d4bbc38065db3b595cd5bd73c323bc1d
@@ -595,7 +595,7 @@ theorem continuous_of_continuous_comp {q : SeminormFamily πβ F ΞΉ'} [Topolo
simp_rw [ContinuousAt, f.map_zero, q.with_seminorms_iff_nhds_eq_infi.mp hq, Filter.tendsto_infα΅’,
Filter.tendsto_comap_iff]
intro i
- convert (hf i).ContinuousAt
+ convert(hf i).ContinuousAt
exact (map_zero _).symm
#align seminorm.continuous_of_continuous_comp Seminorm.continuous_of_continuous_comp
mathlib commit https://github.com/leanprover-community/mathlib/commit/3180fab693e2cee3bff62675571264cb8778b212
@@ -157,7 +157,7 @@ theorem basisSets_smul_right (v : E) (U : Set E) (hU : U β p.basis_sets) :
Β· simp_rw [(lt_div_iff h).symm]
rw [β _root_.ball_zero_eq]
exact Metric.ball_mem_nhds 0 (div_pos hr h)
- simp_rw [le_antisymm (not_lt.mp h) (map_nonneg _ v), mul_zero, hr]
+ simp_rw [le_antisymm (not_lt.mp h) (map_nonneg _ v), MulZeroClass.mul_zero, hr]
exact IsOpen.mem_nhds isOpen_univ (mem_univ 0)
#align seminorm_family.basis_sets_smul_right SeminormFamily.basisSets_smul_right
mathlib commit https://github.com/leanprover-community/mathlib/commit/4c586d291f189eecb9d00581aeb3dd998ac34442
@@ -351,7 +351,7 @@ theorem WithSeminorms.isOpen_iff_mem_balls (hp : WithSeminorms p) (U : Set E) :
simp_rw [β WithSeminorms.mem_nhds_iff hp _ U, isOpen_iff_mem_nhds]
#align with_seminorms.is_open_iff_mem_balls WithSeminorms.isOpen_iff_mem_balls
-/- ./././Mathport/Syntax/Translate/Basic.lean:628:2: warning: expanding binder collection (x Β«expr β Β» 0) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (x Β«expr β Β» 0) -/
/- Note that through the following lemmas, one also immediately has that separating families
of seminorms induce Tβ and Tβ topologies by `topological_add_group.t2_space`
and `topological_add_group.t3_space` -/
@@ -379,7 +379,7 @@ theorem WithSeminorms.separating_of_t1 [T1Space E] (hp : WithSeminorms p) (x : E
simp only [ball_finset_sup_eq_Inter _ _ _ hr, mem_Interβ, mem_ball_zero, h, hr, forall_true_iff]
#align with_seminorms.separating_of_t1 WithSeminorms.separating_of_t1
-/- ./././Mathport/Syntax/Translate/Basic.lean:628:2: warning: expanding binder collection (x Β«expr β Β» 0) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (x Β«expr β Β» 0) -/
/-- A family of seminorms is separating iff it induces a Tβ topology. -/
theorem WithSeminorms.separating_iff_t1 (hp : WithSeminorms p) :
(β (x) (_ : x β 0), β i, p i x β 0) β T1Space E :=
@@ -433,7 +433,7 @@ theorem WithSeminorms.continuous_seminorm [NontriviallyNormedField π] [Module
exact Filter.mem_infα΅’_of_mem i (Filter.preimage_mem_comap <| Metric.ball_mem_nhds _ one_pos)
#align with_seminorms.continuous_seminorm WithSeminorms.continuous_seminorm
-/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:76:14: unsupported tactic `congrm #[[expr Β«expr = Β»(_, Β«exprβ¨
, Β»((i), _))]] -/
+/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `congrm #[[expr Β«expr = Β»(_, Β«exprβ¨
, Β»((i), _))]] -/
/-- The topology induced by a family of seminorms is exactly the infimum of the ones induced by
each seminorm individually. We express this as a characterization of `with_seminorms p`. -/
theorem SeminormFamily.withSeminorms_iff_topologicalSpace_eq_infα΅’ (p : SeminormFamily π E ΞΉ) :
@@ -445,14 +445,14 @@ theorem SeminormFamily.withSeminorms_iff_topologicalSpace_eq_infα΅’ (p : Seminor
TopologicalAddGroup.ext_iff inferInstance (topologicalAddGroup_infα΅’ fun i => inferInstance),
nhds_infα΅’]
trace
- "./././Mathport/Syntax/Translate/Tactic/Builtin.lean:76:14: unsupported tactic `congrm #[[expr Β«expr = Β»(_, Β«exprβ¨
, Β»((i), _))]]"
+ "./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `congrm #[[expr Β«expr = Β»(_, Β«exprβ¨
, Β»((i), _))]]"
exact @comap_norm_nhds_zero _ (p i).toAddGroupSeminorm.toSeminormedAddGroup
all_goals infer_instance
#align seminorm_family.with_seminorms_iff_topological_space_eq_infi SeminormFamily.withSeminorms_iff_topologicalSpace_eq_infα΅’
omit t
-/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:76:14: unsupported tactic `congrm #[[expr Β«expr = Β»(_, Β«exprβ¨
, Β»((i), _))]] -/
+/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `congrm #[[expr Β«expr = Β»(_, Β«exprβ¨
, Β»((i), _))]] -/
/-- The uniform structure induced by a family of seminorms is exactly the infimum of the ones
induced by each seminorm individually. We express this as a characterization of
`with_seminorms p`. -/
@@ -464,7 +464,7 @@ theorem SeminormFamily.withSeminorms_iff_uniformSpace_eq_infα΅’ [u : UniformSpac
UniformAddGroup.ext_iff inferInstance (uniformAddGroup_infα΅’ fun i => inferInstance),
toTopologicalSpace_infα΅’, nhds_infα΅’]
trace
- "./././Mathport/Syntax/Translate/Tactic/Builtin.lean:76:14: unsupported tactic `congrm #[[expr Β«expr = Β»(_, Β«exprβ¨
, Β»((i), _))]]"
+ "./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `congrm #[[expr Β«expr = Β»(_, Β«exprβ¨
, Β»((i), _))]]"
exact @comap_norm_nhds_zero _ (p i).toAddGroupSeminorm.toSeminormedAddGroup
all_goals infer_instance
#align seminorm_family.with_seminorms_iff_uniform_space_eq_infi SeminormFamily.withSeminorms_iff_uniformSpace_eq_infα΅’
mathlib commit https://github.com/leanprover-community/mathlib/commit/eb0cb4511aaef0da2462207b67358a0e1fe1e2ee
@@ -461,7 +461,7 @@ theorem SeminormFamily.withSeminorms_iff_uniformSpace_eq_infα΅’ [u : UniformSpac
WithSeminorms p β u = β¨
i, (p i).toAddGroupSeminorm.toSeminormedAddCommGroup.toUniformSpace :=
by
rw [p.with_seminorms_iff_nhds_eq_infi,
- UniformAddGroup.ext_iff inferInstance (uniform_add_group_infα΅’ fun i => inferInstance),
+ UniformAddGroup.ext_iff inferInstance (uniformAddGroup_infα΅’ fun i => inferInstance),
toTopologicalSpace_infα΅’, nhds_infα΅’]
trace
"./././Mathport/Syntax/Translate/Tactic/Builtin.lean:76:14: unsupported tactic `congrm #[[expr Β«expr = Β»(_, Β«exprβ¨
, Β»((i), _))]]"
mathlib commit https://github.com/leanprover-community/mathlib/commit/bd9851ca476957ea4549eb19b40e7b5ade9428cc
@@ -442,7 +442,7 @@ theorem SeminormFamily.withSeminorms_iff_topologicalSpace_eq_infα΅’ (p : Seminor
β¨
i, (p i).toAddGroupSeminorm.toSeminormedAddCommGroup.toUniformSpace.toTopologicalSpace :=
by
rw [p.with_seminorms_iff_nhds_eq_infi,
- TopologicalAddGroup.ext_iff inferInstance (topological_add_group_infα΅’ fun i => inferInstance),
+ TopologicalAddGroup.ext_iff inferInstance (topologicalAddGroup_infα΅’ fun i => inferInstance),
nhds_infα΅’]
trace
"./././Mathport/Syntax/Translate/Tactic/Builtin.lean:76:14: unsupported tactic `congrm #[[expr Β«expr = Β»(_, Β«exprβ¨
, Β»((i), _))]]"
@@ -591,7 +591,7 @@ theorem continuous_of_continuous_comp {q : SeminormFamily πβ F ΞΉ'} [Topolo
[TopologicalAddGroup E] [TopologicalSpace F] [TopologicalAddGroup F] (hq : WithSeminorms q)
(f : E βββ[Οββ] F) (hf : β i, Continuous ((q i).comp f)) : Continuous f :=
by
- refine' continuous_of_continuous_at_zero f _
+ refine' continuous_of_continuousAt_zero f _
simp_rw [ContinuousAt, f.map_zero, q.with_seminorms_iff_nhds_eq_infi.mp hq, Filter.tendsto_infα΅’,
Filter.tendsto_comap_iff]
intro i
@@ -718,7 +718,7 @@ theorem LinearMap.withSeminormsInduced [hΞΉ : Nonempty ΞΉ] {q : SeminormFamily
@WithSeminorms π E ΞΉ _ _ _ _ (q.comp f) (induced f inferInstance) :=
by
letI : TopologicalSpace E := induced f inferInstance
- letI : TopologicalAddGroup E := topological_add_group_induced f
+ letI : TopologicalAddGroup E := topologicalAddGroup_induced f
rw [(q.comp f).withSeminorms_iff_nhds_eq_infα΅’, nhds_induced, map_zero,
q.with_seminorms_iff_nhds_eq_infi.mp hq, Filter.comap_infα΅’]
refine' infα΅’_congr fun i => _
mathlib commit https://github.com/leanprover-community/mathlib/commit/bd9851ca476957ea4549eb19b40e7b5ade9428cc
@@ -486,7 +486,7 @@ theorem norm_withSeminorms (π E) [NormedField π] [SeminormedAddCommGroup E
rintro U (hU : U β p.basisSets)
rcases p.basisSets_iff.mp hU with β¨s, r, hr, hUβ©
use r, hr
- rw [hU, id.def]
+ rw [hU, id]
by_cases h : s.Nonempty
Β· rw [Finset.sup_const h]
rw [Finset.not_nonempty_iff_eq_empty.mp h, Finset.sup_empty, ball_bot _ hr]
@@ -506,7 +506,7 @@ theorem WithSeminorms.isVonNBounded_iff_finset_seminorm_bounded {s : Set E} (hp
rw [hp.hasBasis.isVonNBounded_iff]
constructor
Β· intro h I
- simp only [id.def] at h
+ simp only [id] at h
specialize h ((I.sup p).ball 0 1) (p.basisSets_mem I zero_lt_one)
rcases h.exists_pos with β¨r, hr, hβ©
cases' NormedField.exists_lt_norm π r with a ha
@@ -518,7 +518,7 @@ theorem WithSeminorms.isVonNBounded_iff_finset_seminorm_bounded {s : Set E} (hp
exact (Finset.sup I p).mem_ball_zero.mp h
intro h s' hs'
rcases p.basisSets_iff.mp hs' with β¨I, r, hr, hs'β©
- rw [id.def, hs']
+ rw [id, hs']
rcases h I with β¨r', _, h'β©
simp_rw [β (I.sup p).mem_ball_zero] at h'
refine' Absorbs.mono_right _ h'
This adds the notation βr
for Real.sqrt r
. The precedence is such that βxβ»ΒΉ
is parsed as β(xβ»ΒΉ)
; not because this is particularly desirable, but because it's the default and the choice doesn't really matter.
This is extracted from #7907, which adds a more general nth root typeclass.
The idea is to perform all the boring substitutions downstream quickly, so that we can play around with custom elaborators with a much slower rate of code-rot.
This PR also won't rot as quickly, as it does not forbid writing x.sqrt
as that PR does.
While perhaps claiming β
for Real.sqrt
is greedy; it:
NNReal.sqrt
and Nat.sqrt
sqrt
on Float
Co-authored-by: Yury G. Kudryashov <urkud@urkud.name>
@@ -158,9 +158,9 @@ variable [Nonempty ΞΉ]
theorem basisSets_smul (U) (hU : U β p.basisSets) :
β V β π (0 : π), β W β p.addGroupFilterBasis.sets, V β’ W β U := by
rcases p.basisSets_iff.mp hU with β¨s, r, hr, hUβ©
- refine' β¨Metric.ball 0 r.sqrt, Metric.ball_mem_nhds 0 (Real.sqrt_pos.mpr hr), _β©
- refine' β¨(s.sup p).ball 0 r.sqrt, p.basisSets_mem s (Real.sqrt_pos.mpr hr), _β©
- refine' Set.Subset.trans (ball_smul_ball (s.sup p) r.sqrt r.sqrt) _
+ refine' β¨Metric.ball 0 βr, Metric.ball_mem_nhds 0 (Real.sqrt_pos.mpr hr), _β©
+ refine' β¨(s.sup p).ball 0 βr, p.basisSets_mem s (Real.sqrt_pos.mpr hr), _β©
+ refine' Set.Subset.trans (ball_smul_ball (s.sup p) βr βr) _
rw [hU, Real.mul_self_sqrt (le_of_lt hr)]
#align seminorm_family.basis_sets_smul SeminormFamily.basisSets_smul
bex
and ball
from lemma names (#11615)
Follow-up to #10816.
Remaining places containing such lemmas are
Option.bex_ne_none
and Option.ball_ne_none
: defined in Lean coreNat.decidableBallLT
and Nat.decidableBallLE
: defined in Lean corebef_def
is still used in a number of places and could be renamedBAll.imp_{left,right}
, BEx.imp_{left,right}
, BEx.intro
and BEx.elim
I only audited the first ~150 lemmas mentioning "ball"; too many lemmas named after Metric.ball/openBall/closedBall.
Co-authored-by: YaΓ«l Dillies <yael.dillies@gmail.com>
@@ -547,7 +547,7 @@ theorem WithSeminorms.isVonNBounded_iff_seminorm_bounded {s : Set E} (hp : WithS
by_cases hI : I.Nonempty
Β· choose r hr h using hi
have h' : 0 < I.sup' hI r := by
- rcases hI.bex with β¨i, hiβ©
+ rcases hI with β¨i, hiβ©
exact lt_of_lt_of_le (hr i) (Finset.le_sup' r hi)
refine' β¨I.sup' hI r, h', fun x hx => finset_sup_apply_lt h' fun i hi => _β©
refine' lt_of_lt_of_le (h i x hx) _
Purely automatic replacement. If this is in any way controversial; I'm happy to just close this PR.
@@ -318,14 +318,14 @@ theorem WithSeminorms.hasBasis_ball (hp : WithSeminorms p) {x : E} :
#align with_seminorms.has_basis_ball WithSeminorms.hasBasis_ball
/-- The `x`-neighbourhoods of a space whose topology is induced by a family of seminorms
-are exactly the sets which contain seminorm balls around `x`.-/
+are exactly the sets which contain seminorm balls around `x`. -/
theorem WithSeminorms.mem_nhds_iff (hp : WithSeminorms p) (x : E) (U : Set E) :
U β π x β β s : Finset ΞΉ, β r > 0, (s.sup p).ball x r β U := by
rw [hp.hasBasis_ball.mem_iff, Prod.exists]
#align with_seminorms.mem_nhds_iff WithSeminorms.mem_nhds_iff
/-- The open sets of a space whose topology is induced by a family of seminorms
-are exactly the sets which contain seminorm balls around all of their points.-/
+are exactly the sets which contain seminorm balls around all of their points. -/
theorem WithSeminorms.isOpen_iff_mem_balls (hp : WithSeminorms p) (U : Set E) :
IsOpen U β β x β U, β s : Finset ΞΉ, β r > 0, (s.sup p).ball x r β U := by
simp_rw [β WithSeminorms.mem_nhds_iff hp _ U, isOpen_iff_mem_nhds]
@@ -830,7 +830,7 @@ lemma bound_of_continuous [Nonempty ΞΉ] [t : TopologicalSpace E] (hp : WithSemin
-- The inclusion `hΞ΅` tells us exactly that `q` is *still* continuous for this new topology
have : Continuous q :=
Seminorm.continuous (r := 1) (mem_of_superset (Metric.ball_mem_nhds _ Ξ΅_pos) hΞ΅)
- -- Hence we can conclude by applying `bound_of_continuous_normed_space`.
+ -- Hence we can conclude by applying `bound_of_continuous_normedSpace`.
rcases bound_of_continuous_normedSpace q this with β¨C, C_pos, hCβ©
exact β¨s, β¨C, C_pos.leβ©, fun H β¦ C_pos.ne.symm (congr_arg NNReal.toReal H), hCβ©
-- Note that the key ingredient for this proof is that, by scaling arguments hidden in
Empty lines were removed by executing the following Python script twice
import os
import re
# Loop through each file in the repository
for dir_path, dirs, files in os.walk('.'):
for filename in files:
if filename.endswith('.lean'):
file_path = os.path.join(dir_path, filename)
# Open the file and read its contents
with open(file_path, 'r') as file:
content = file.read()
# Use a regular expression to replace sequences of "variable" lines separated by empty lines
# with sequences without empty lines
modified_content = re.sub(r'(variable.*\n)\n(variable(?! .* in))', r'\1\2', content)
# Write the modified content back to the file
with open(file_path, 'w') as file:
file.write(modified_content)
@@ -58,7 +58,6 @@ variable {π πβ π πβ E F G ΞΉ ΞΉ' : Type*}
section FilterBasis
variable [NormedField π] [AddCommGroup E] [Module π E]
-
variable (π E ΞΉ)
/-- An abbreviation for indexed families of seminorms. This is mainly to allow for dot-notation. -/
@@ -215,9 +214,7 @@ section Bounded
namespace Seminorm
variable [NormedField π] [AddCommGroup E] [Module π E]
-
variable [NormedField πβ] [AddCommGroup F] [Module πβ F]
-
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
-- Todo: This should be phrased entirely in terms of the von Neumann bornology.
@@ -278,7 +275,6 @@ theorem WithSeminorms.withSeminorms_eq {p : SeminormFamily π E ΞΉ} [t : Topol
#align with_seminorms.with_seminorms_eq WithSeminorms.withSeminorms_eq
variable [TopologicalSpace E]
-
variable {p : SeminormFamily π E ΞΉ}
theorem WithSeminorms.topologicalAddGroup (hp : WithSeminorms p) : TopologicalAddGroup E := by
@@ -374,7 +370,6 @@ end Topology
section Tendsto
variable [NormedField π] [AddCommGroup E] [Module π E] [Nonempty ΞΉ] [TopologicalSpace E]
-
variable {p : SeminormFamily π E ΞΉ}
/-- Convergence along filters for `WithSeminorms`.
@@ -409,7 +404,6 @@ end Tendsto
section TopologicalAddGroup
variable [NormedField π] [AddCommGroup E] [Module π E]
-
variable [Nonempty ΞΉ]
section TopologicalSpace
@@ -504,9 +498,7 @@ end NormedSpace
section NontriviallyNormedField
variable [NontriviallyNormedField π] [AddCommGroup E] [Module π E] [Nonempty ΞΉ]
-
variable {p : SeminormFamily π E ΞΉ}
-
variable [TopologicalSpace E]
theorem WithSeminorms.isVonNBounded_iff_finset_seminorm_bounded {s : Set E} (hp : WithSeminorms p) :
@@ -584,17 +576,11 @@ section continuous_of_bounded
namespace Seminorm
variable [NontriviallyNormedField π] [AddCommGroup E] [Module π E]
-
variable [NormedField π] [Module π E]
-
variable [NontriviallyNormedField πβ] [AddCommGroup F] [Module πβ F]
-
variable [NormedField πβ] [Module πβ F]
-
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
-
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
-
variable [Nonempty ΞΉ] [Nonempty ΞΉ']
theorem continuous_of_continuous_comp {q : SeminormFamily πβ F ΞΉ'} [TopologicalSpace E]
@@ -899,9 +885,7 @@ end NormedSpace
section TopologicalConstructions
variable [NormedField π] [AddCommGroup E] [Module π E]
-
variable [NormedField πβ] [AddCommGroup F] [Module πβ F]
-
variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
/-- The family of seminorms obtained by composing each seminorm by a linear map. -/
@@ -960,9 +944,7 @@ end TopologicalConstructions
section TopologicalProperties
variable [NontriviallyNormedField π] [AddCommGroup E] [Module π E] [Nonempty ΞΉ] [Countable ΞΉ]
-
variable {p : SeminormFamily π E ΞΉ}
-
variable [TopologicalSpace E]
/-- If the topology of a space is induced by a countable family of seminorms, then the topology
ball
and bex
from lemma names (#10816)
ball
for "bounded forall" and bex
for "bounded exists" are from experience very confusing abbreviations. This PR renames them to forall_mem
and exists_mem
in the few Set
lemma names that mention them.
Also deprecate ball_image_of_ball
, mem_image_elim
, mem_image_elim_on
since those lemmas are duplicates of the renamed lemmas (apart from argument order and implicitness, which I am also fixing by making the binder in the RHS of forall_mem_image
semi-implicit), have obscure names and are completely unused.
@@ -539,7 +539,7 @@ theorem WithSeminorms.image_isVonNBounded_iff_finset_seminorm_bounded (f : G β
(hp : WithSeminorms p) :
Bornology.IsVonNBounded π (f '' s) β
β I : Finset ΞΉ, β r > 0, β x β s, I.sup p (f x) < r := by
- simp_rw [hp.isVonNBounded_iff_finset_seminorm_bounded, Set.ball_image_iff]
+ simp_rw [hp.isVonNBounded_iff_finset_seminorm_bounded, Set.forall_mem_image]
set_option linter.uppercaseLean3 false in
#align with_seminorms.image_is_vonN_bounded_iff_finset_seminorm_bounded WithSeminorms.image_isVonNBounded_iff_finset_seminorm_bounded
@@ -571,7 +571,7 @@ set_option linter.uppercaseLean3 false in
theorem WithSeminorms.image_isVonNBounded_iff_seminorm_bounded (f : G β E) {s : Set G}
(hp : WithSeminorms p) :
Bornology.IsVonNBounded π (f '' s) β β i : ΞΉ, β r > 0, β x β s, p i (f x) < r := by
- simp_rw [hp.isVonNBounded_iff_seminorm_bounded, Set.ball_image_iff]
+ simp_rw [hp.isVonNBounded_iff_seminorm_bounded, Set.forall_mem_image]
set_option linter.uppercaseLean3 false in
#align with_seminorms.image_is_vonN_bounded_iff_seminorm_bounded WithSeminorms.image_isVonNBounded_iff_seminorm_bounded
@@ -694,7 +694,7 @@ protected theorem _root_.WithSeminorms.equicontinuous_TFAE {ΞΊ : Type*}
simpa using (hx k).le
have bdd : BddAbove (range fun k β¦ (q i).comp (f k)) :=
Seminorm.bddAbove_of_absorbent (absorbent_nhds_zero this)
- (fun x hx β¦ β¨1, forall_range_iff.mpr hxβ©)
+ (fun x hx β¦ β¨1, forall_mem_range.mpr hxβ©)
rw [β Seminorm.coe_iSup_eq bdd]
refine β¨bdd, Seminorm.continuous' (r := 1) ?_β©
filter_upwards [this] with x hx
@@ -150,7 +150,7 @@ theorem basisSets_smul_right (v : E) (U : Set E) (hU : U β p.basisSets) :
Β· simp_rw [(lt_div_iff h).symm]
rw [β _root_.ball_zero_eq]
exact Metric.ball_mem_nhds 0 (div_pos hr h)
- simp_rw [le_antisymm (not_lt.mp h) (map_nonneg _ v), mul_zero, hr]
+ simp_rw [le_antisymm (not_lt.mp h) (apply_nonneg _ v), mul_zero, hr]
exact IsOpen.mem_nhds isOpen_univ (mem_univ 0)
#align seminorm_family.basis_sets_smul_right SeminormFamily.basisSets_smul_right
Also fix GeneralizedContinuedFraction.of_convergence
:
it worked for the Preorder.topology
only.
@@ -324,7 +324,7 @@ theorem WithSeminorms.hasBasis_ball (hp : WithSeminorms p) {x : E} :
/-- The `x`-neighbourhoods of a space whose topology is induced by a family of seminorms
are exactly the sets which contain seminorm balls around `x`.-/
theorem WithSeminorms.mem_nhds_iff (hp : WithSeminorms p) (x : E) (U : Set E) :
- U β nhds x β β s : Finset ΞΉ, β r > 0, (s.sup p).ball x r β U := by
+ U β π x β β s : Finset ΞΉ, β r > 0, (s.sup p).ball x r β U := by
rw [hp.hasBasis_ball.mem_iff, Prod.exists]
#align with_seminorms.mem_nhds_iff WithSeminorms.mem_nhds_iff
Absorbs
(#9676)
Redefine Absorbs
and Absorbent
in terms of the cobounded
filter.
@@ -516,7 +516,7 @@ theorem WithSeminorms.isVonNBounded_iff_finset_seminorm_bounded {s : Set E} (hp
Β· intro h I
simp only [id.def] at h
specialize h ((I.sup p).ball 0 1) (p.basisSets_mem I zero_lt_one)
- rcases h with β¨r, hr, hβ©
+ rcases h.exists_pos with β¨r, hr, hβ©
cases' NormedField.exists_lt_norm π r with a ha
specialize h a (le_of_lt ha)
rw [Seminorm.smul_ball_zero (norm_pos_iff.1 <| hr.trans ha), mul_one] at h
Rename Filter.HasBasis.isVonNBounded_basis_iff
to Filter.HasBasis.isVonNBounded_iff
.
It already has basis
in the namespace.
@@ -511,7 +511,7 @@ variable [TopologicalSpace E]
theorem WithSeminorms.isVonNBounded_iff_finset_seminorm_bounded {s : Set E} (hp : WithSeminorms p) :
Bornology.IsVonNBounded π s β β I : Finset ΞΉ, β r > 0, β x β s, I.sup p x < r := by
- rw [hp.hasBasis.isVonNBounded_basis_iff]
+ rw [hp.hasBasis.isVonNBounded_iff]
constructor
Β· intro h I
simp only [id.def] at h
$
with <|
(#9319)
See Zulip thread for the discussion.
@@ -802,7 +802,7 @@ variable [NontriviallyNormedField π] [AddCommGroup E] [Module π E]
lemma map_eq_zero_of_norm_zero (q : Seminorm π F)
(hq : Continuous q) {x : F} (hx : βxβ = 0) : q x = 0 :=
(map_zero q) βΈ
- ((specializes_iff_mem_closure.mpr $ mem_closure_zero_iff_norm.mpr hx).map hq).eq.symm
+ ((specializes_iff_mem_closure.mpr <| mem_closure_zero_iff_norm.mpr hx).map hq).eq.symm
/-- Let `F` be a semi-`NormedSpace` over a `NontriviallyNormedField`, and let `q` be a
seminorm on `F`. If `q` is continuous, then it is uniformly controlled by the norm, that is there
@@ -813,7 +813,7 @@ controlled image by `q`. The control of `q` at the original element follows by r
lemma bound_of_continuous_normedSpace (q : Seminorm π F)
(hq : Continuous q) : β C, 0 < C β§ (β x : F, q x β€ C * βxβ) := by
have hq' : Tendsto q (π 0) (π 0) := map_zero q βΈ hq.tendsto 0
- rcases NormedAddCommGroup.nhds_zero_basis_norm_lt.mem_iff.mp (hq' $ Iio_mem_nhds one_pos)
+ rcases NormedAddCommGroup.nhds_zero_basis_norm_lt.mem_iff.mp (hq' <| Iio_mem_nhds one_pos)
with β¨Ξ΅, Ξ΅_pos, hΞ΅β©
rcases NormedField.exists_one_lt_norm π with β¨c, hcβ©
have : 0 < βcβ / Ξ΅ := by positivity
β x β s, _
instead of β (x) (_ : x β s), _
(#9184)
Search for [ββ].*(_
and manually replace some occurrences with more readable versions.
In case of β
, the new expressions are defeq to the old ones.
In case of β
, they differ by exists_prop
.
In some rare cases, golf proofs that needed fixing.
@@ -78,8 +78,8 @@ def basisSets (p : SeminormFamily π E ΞΉ) : Set (Set E) :=
variable (p : SeminormFamily π E ΞΉ)
theorem basisSets_iff {U : Set E} :
- U β p.basisSets β β (i : Finset ΞΉ) (r : _) (_ : 0 < r), U = ball (i.sup p) 0 r := by
- simp only [basisSets, mem_iUnion, mem_singleton_iff]
+ U β p.basisSets β β (i : Finset ΞΉ) (r : β), 0 < r β§ U = ball (i.sup p) 0 r := by
+ simp only [basisSets, mem_iUnion, exists_prop, mem_singleton_iff]
#align seminorm_family.basis_sets_iff SeminormFamily.basisSets_iff
theorem basisSets_mem (i : Finset ΞΉ) {r : β} (hr : 0 < r) : (i.sup p).ball 0 r β p.basisSets :=
(Β· op Β·) a
by (a op Β·)
(#8843)
I used the regex \(\(Β· (.) Β·\) (.)\)
, replacing with ($2 $1 Β·)
.
@@ -313,7 +313,7 @@ theorem WithSeminorms.hasBasis_ball (hp : WithSeminorms p) {x : E} :
(fun sr : Finset ΞΉ Γ β => 0 < sr.2) fun sr => (sr.1.sup p).ball x sr.2 := by
have : TopologicalAddGroup E := hp.topologicalAddGroup
rw [β map_add_left_nhds_zero]
- convert hp.hasBasis_zero_ball.map ((Β· + Β·) x) using 1
+ convert hp.hasBasis_zero_ball.map (x + Β·) using 1
ext sr : 1
-- Porting note: extra type ascriptions needed on `0`
have : (sr.fst.sup p).ball (x +α΅₯ (0 : E)) sr.snd = x +α΅₯ (sr.fst.sup p).ball 0 sr.snd :=
@@ -354,7 +354,7 @@ theorem WithSeminorms.T1_of_separating (hp : WithSeminorms p)
theorem WithSeminorms.separating_of_T1 [T1Space E] (hp : WithSeminorms p) (x : E) (hx : x β 0) :
β i, p i x β 0 := by
have := ((t1Space_TFAE E).out 0 9).mp (inferInstanceAs <| T1Space E)
- by_contra' h
+ by_contra! h
refine' hx (this _)
rw [hp.hasBasis_zero_ball.specializes_iff]
rintro β¨s, rβ© (hr : 0 < r)
Make toTopologicalSpace_top
a rfl
.
Also move some lemmas to the UniformSpace
namespace.
@@ -468,7 +468,7 @@ theorem SeminormFamily.withSeminorms_iff_uniformSpace_eq_iInf [u : UniformSpace
WithSeminorms p β u = β¨
i, (p i).toSeminormedAddCommGroup.toUniformSpace := by
rw [p.withSeminorms_iff_nhds_eq_iInf,
UniformAddGroup.ext_iff inferInstance (uniformAddGroup_iInf fun i => inferInstance),
- toTopologicalSpace_iInf, nhds_iInf]
+ UniformSpace.toTopologicalSpace_iInf, nhds_iInf]
congrm _ = β¨
i, ?_
exact @comap_norm_nhds_zero _ (p i).toAddGroupSeminorm.toSeminormedAddGroup
#align seminorm_family.with_seminorms_iff_uniform_space_eq_infi SeminormFamily.withSeminorms_iff_uniformSpace_eq_iInf
All the other properties of topological spaces like T0Space or RegularSpace are in the root namespace. Many files were opening TopologicalSpace
just for the sake of shortening TopologicalSpace.SecondCountableTopology
...
@@ -968,7 +968,7 @@ variable [TopologicalSpace E]
/-- If the topology of a space is induced by a countable family of seminorms, then the topology
is first countable. -/
theorem WithSeminorms.first_countable (hp : WithSeminorms p) :
- TopologicalSpace.FirstCountableTopology E := by
+ FirstCountableTopology E := by
have := hp.topologicalAddGroup
let _ : UniformSpace E := TopologicalAddGroup.toUniformSpace E
have : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
And fix some names in comments where this revealed issues
@@ -848,7 +848,7 @@ lemma bound_of_continuous [Nonempty ΞΉ] [t : TopologicalSpace E] (hp : WithSemin
rcases bound_of_continuous_normedSpace q this with β¨C, C_pos, hCβ©
exact β¨s, β¨C, C_pos.leβ©, fun H β¦ C_pos.ne.symm (congr_arg NNReal.toReal H), hCβ©
-- Note that the key ingredient for this proof is that, by scaling arguments hidden in
- -- `seminorm.continuous`, we only have to look at the `q`-ball of radius one, and the `s` we get
+ -- `Seminorm.continuous`, we only have to look at the `q`-ball of radius one, and the `s` we get
-- from that will automatically work for all other radii.
end Seminorm
congr(...)
congruence quotations and port congrm
tactic (#2544)
Adds a term elaborator for congr(...)
"congruence quotations". For example, if hf : f = f'
and hx : x = x'
, then we have congr($hf $x) : f x = f' x'
. This supports the functions having implicit arguments, and it has support for subsingleton instance arguments. So for example, if s t : Set X
are sets with Fintype
instances and h : s = t
then congr(Fintype.card $h) : Fintype.card s = Fintype.card t
works.
Ports the congrm
tactic as a convenient frontend for applying a congruence quotation to the goal. Holes are turned into congruence holes. For example, congrm 1 + ?_
uses congr(1 + $(?_))
. Placeholders (_
) do not turn into congruence holes; that's not to say they have to be identical on the LHS and RHS, but congrm
itself is responsible for finding a congruence lemma for such arguments.
Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Moritz Doll <moritz.doll@googlemail.com>
@@ -447,10 +447,7 @@ theorem SeminormFamily.withSeminorms_iff_topologicalSpace_eq_iInf [TopologicalAd
rw [p.withSeminorms_iff_nhds_eq_iInf,
TopologicalAddGroup.ext_iff inferInstance (topologicalAddGroup_iInf fun i => inferInstance),
nhds_iInf]
- -- Porting note: next three lines was `congrm (_ = β¨
i, _)`
- refine Eq.to_iff ?_
- congr
- funext i
+ congrm _ = β¨
i, ?_
exact @comap_norm_nhds_zero _ (p i).toSeminormedAddGroup
#align seminorm_family.with_seminorms_iff_topological_space_eq_infi SeminormFamily.withSeminorms_iff_topologicalSpace_eq_iInf
@@ -472,10 +469,7 @@ theorem SeminormFamily.withSeminorms_iff_uniformSpace_eq_iInf [u : UniformSpace
rw [p.withSeminorms_iff_nhds_eq_iInf,
UniformAddGroup.ext_iff inferInstance (uniformAddGroup_iInf fun i => inferInstance),
toTopologicalSpace_iInf, nhds_iInf]
- -- Porting note: next three lines was `congrm (_ = β¨
i, _)`
- refine Eq.to_iff ?_
- congr
- funext i
+ congrm _ = β¨
i, ?_
exact @comap_norm_nhds_zero _ (p i).toAddGroupSeminorm.toSeminormedAddGroup
#align seminorm_family.with_seminorms_iff_uniform_space_eq_infi SeminormFamily.withSeminorms_iff_uniformSpace_eq_iInf
MulZeroClass.
in mul_zero
/zero_mul
(#6682)
Search&replace MulZeroClass.mul_zero
-> mul_zero
, MulZeroClass.zero_mul
-> zero_mul
.
These were introduced by Mathport, as the full name of mul_zero
is actually MulZeroClass.mul_zero
(it's exported with the short name).
@@ -150,7 +150,7 @@ theorem basisSets_smul_right (v : E) (U : Set E) (hU : U β p.basisSets) :
Β· simp_rw [(lt_div_iff h).symm]
rw [β _root_.ball_zero_eq]
exact Metric.ball_mem_nhds 0 (div_pos hr h)
- simp_rw [le_antisymm (not_lt.mp h) (map_nonneg _ v), MulZeroClass.mul_zero, hr]
+ simp_rw [le_antisymm (not_lt.mp h) (map_nonneg _ v), mul_zero, hr]
exact IsOpen.mem_nhds isOpen_univ (mem_univ 0)
#align seminorm_family.basis_sets_smul_right SeminormFamily.basisSets_smul_right
Type _
and Sort _
(#6499)
We remove all possible occurences of Type _
and Sort _
in favor of Type*
and Sort*
.
This has nice performance benefits.
@@ -53,7 +53,7 @@ open NormedField Set Seminorm TopologicalSpace Filter List
open BigOperators NNReal Pointwise Topology Uniformity
-variable {π πβ π πβ E F G ΞΉ ΞΉ' : Type _}
+variable {π πβ π πβ E F G ΞΉ ΞΉ' : Type*}
section FilterBasis
@@ -226,13 +226,13 @@ def IsBounded (p : ΞΉ β Seminorm π E) (q : ΞΉ' β Seminorm πβ F) (f :
β i, β s : Finset ΞΉ, β C : ββ₯0, (q i).comp f β€ C β’ s.sup p
#align seminorm.is_bounded Seminorm.IsBounded
-theorem isBounded_const (ΞΉ' : Type _) [Nonempty ΞΉ'] {p : ΞΉ β Seminorm π E} {q : Seminorm πβ F}
+theorem isBounded_const (ΞΉ' : Type*) [Nonempty ΞΉ'] {p : ΞΉ β Seminorm π E} {q : Seminorm πβ F}
(f : E βββ[Οββ] F) :
IsBounded p (fun _ : ΞΉ' => q) f β β (s : Finset ΞΉ) (C : ββ₯0), q.comp f β€ C β’ s.sup p := by
simp only [IsBounded, forall_const]
#align seminorm.is_bounded_const Seminorm.isBounded_const
-theorem const_isBounded (ΞΉ : Type _) [Nonempty ΞΉ] {p : Seminorm π E} {q : ΞΉ' β Seminorm πβ F}
+theorem const_isBounded (ΞΉ : Type*) [Nonempty ΞΉ] {p : Seminorm π E} {q : ΞΉ' β Seminorm πβ F}
(f : E βββ[Οββ] F) : IsBounded (fun _ : ΞΉ => p) q f β β i, β C : ββ₯0, (q i).comp f β€ C β’ p := by
constructor <;> intro h i
Β· rcases h i with β¨s, C, hβ©
@@ -669,7 +669,7 @@ maps from `E` to `F`, the following are equivalent:
In particular, if you can determine all continuous seminorms on `E`, that gives you a complete
characterization of equicontinuity for linear maps from `E` to `F`. For example `E` and `F` are
both normed spaces, you get `NormedSpace.equicontinuous_TFAE`. -/
-protected theorem _root_.WithSeminorms.equicontinuous_TFAE {ΞΊ : Type _}
+protected theorem _root_.WithSeminorms.equicontinuous_TFAE {ΞΊ : Type*}
{q : SeminormFamily πβ F ΞΉ'} [UniformSpace E] [UniformAddGroup E] [u : UniformSpace F]
[hu : UniformAddGroup F] (hq : WithSeminorms q) [ContinuousSMul π E]
(f : ΞΊ β E βββ[Οββ] F) : TFAE
@@ -713,7 +713,7 @@ protected theorem _root_.WithSeminorms.equicontinuous_TFAE {ΞΊ : Type _}
eventually_of_forall fun x k β¦ by simpa using hfp k x
tfae_finish
-theorem _root_.WithSeminorms.uniformEquicontinuous_iff_exists_continuous_seminorm {ΞΊ : Type _}
+theorem _root_.WithSeminorms.uniformEquicontinuous_iff_exists_continuous_seminorm {ΞΊ : Type*}
{q : SeminormFamily πβ F ΞΉ'} [UniformSpace E] [UniformAddGroup E] [u : UniformSpace F]
[hu : UniformAddGroup F] (hq : WithSeminorms q) [ContinuousSMul π E]
(f : ΞΊ β E βββ[Οββ] F) :
@@ -721,7 +721,7 @@ theorem _root_.WithSeminorms.uniformEquicontinuous_iff_exists_continuous_seminor
β i, β p : Seminorm π E, Continuous p β§ β k, (q i).comp (f k) β€ p :=
(hq.equicontinuous_TFAE f).out 2 3
-theorem _root_.WithSeminorms.uniformEquicontinuous_iff_bddAbove_and_continuous_iSup {ΞΊ : Type _}
+theorem _root_.WithSeminorms.uniformEquicontinuous_iff_bddAbove_and_continuous_iSup {ΞΊ : Type*}
{q : SeminormFamily πβ F ΞΉ'} [UniformSpace E] [UniformAddGroup E] [u : UniformSpace F]
[hu : UniformAddGroup F] (hq : WithSeminorms q) [ContinuousSMul π E]
(f : ΞΊ β E βββ[Οββ] F) :
@@ -948,11 +948,11 @@ theorem Inducing.withSeminorms [hΞΉ : Nonempty ΞΉ] {q : SeminormFamily πβ F
#align inducing.with_seminorms Inducing.withSeminorms
/-- (Disjoint) union of seminorm families. -/
-protected def SeminormFamily.sigma {ΞΊ : ΞΉ β Type _} (p : (i : ΞΉ) β SeminormFamily π E (ΞΊ i)) :
+protected def SeminormFamily.sigma {ΞΊ : ΞΉ β Type*} (p : (i : ΞΉ) β SeminormFamily π E (ΞΊ i)) :
SeminormFamily π E ((i : ΞΉ) Γ ΞΊ i) :=
fun β¨i, kβ© => p i k
-theorem withSeminorms_iInf {ΞΊ : ΞΉ β Type _} [Nonempty ((i : ΞΉ) Γ ΞΊ i)] [β i, Nonempty (ΞΊ i)]
+theorem withSeminorms_iInf {ΞΊ : ΞΉ β Type*} [Nonempty ((i : ΞΉ) Γ ΞΊ i)] [β i, Nonempty (ΞΊ i)]
{p : (i : ΞΉ) β SeminormFamily π E (ΞΊ i)} {t : ΞΉ β TopologicalSpace E}
[β i, @TopologicalAddGroup E (t i) _] (hp : β i, WithSeminorms (topology := t i) (p i)) :
WithSeminorms (topology := β¨
i, t i) (SeminormFamily.sigma p) := by
@@ -4,7 +4,8 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Moritz Doll, Anatole Dedecker
-/
import Mathlib.Analysis.Seminorm
-import Mathlib.Analysis.LocallyConvex.Bounded
+import Mathlib.Topology.Algebra.Equicontinuity
+import Mathlib.Topology.MetricSpace.Equicontinuity
import Mathlib.Topology.Algebra.FilterBasis
import Mathlib.Topology.Algebra.Module.LocallyConvex
@@ -48,9 +49,9 @@ seminorm, locally convex
-/
-open NormedField Set Seminorm TopologicalSpace Filter
+open NormedField Set Seminorm TopologicalSpace Filter List
-open BigOperators NNReal Pointwise Topology
+open BigOperators NNReal Pointwise Topology Uniformity
variable {π πβ π πβ E F G ΞΉ ΞΉ' : Type _}
@@ -173,7 +174,7 @@ theorem basisSets_smul_left (x : π) (U : Set E) (hU : U β p.basisSets) :
use (s.sup p).ball 0 (r / βxβ)
exact β¨p.basisSets_mem s (div_pos hr (norm_pos_iff.mpr h)), Subset.rflβ©
refine' β¨(s.sup p).ball 0 r, p.basisSets_mem s hr, _β©
- simp only [not_ne_iff.mp h, subset_def, mem_ball_zero, hr, mem_univ, map_zero, imp_true_iff,
+ simp only [not_ne_iff.mp h, Set.subset_def, mem_ball_zero, hr, mem_univ, map_zero, imp_true_iff,
preimage_const_of_mem, zero_smul]
#align seminorm_family.basis_sets_smul_left SeminormFamily.basisSets_smul_left
@@ -655,6 +656,80 @@ theorem cont_normedSpace_to_withSeminorms (E) [SeminormedAddCommGroup E] [Normed
exact continuous_from_bounded (norm_withSeminorms π E) hq f hf
#align seminorm.cont_normed_space_to_with_seminorms Seminorm.cont_normedSpace_to_withSeminorms
+/-- Let `E` and `F` be two topological vector spaces over a `NontriviallyNormedField`, and assume
+that the topology of `F` is generated by some family of seminorms `q`. For a family `f` of linear
+maps from `E` to `F`, the following are equivalent:
+* `f` is equicontinuous at `0`.
+* `f` is equicontinuous.
+* `f` is uniformly equicontinuous.
+* For each `q i`, the family of seminorms `k β¦ (q i) β (f k)` is bounded by some continuous
+ seminorm `p` on `E`.
+* For each `q i`, the seminorm `β k, (q i) β (f k)` is well-defined and continuous.
+
+In particular, if you can determine all continuous seminorms on `E`, that gives you a complete
+characterization of equicontinuity for linear maps from `E` to `F`. For example `E` and `F` are
+both normed spaces, you get `NormedSpace.equicontinuous_TFAE`. -/
+protected theorem _root_.WithSeminorms.equicontinuous_TFAE {ΞΊ : Type _}
+ {q : SeminormFamily πβ F ΞΉ'} [UniformSpace E] [UniformAddGroup E] [u : UniformSpace F]
+ [hu : UniformAddGroup F] (hq : WithSeminorms q) [ContinuousSMul π E]
+ (f : ΞΊ β E βββ[Οββ] F) : TFAE
+ [ EquicontinuousAt ((β) β f) 0,
+ Equicontinuous ((β) β f),
+ UniformEquicontinuous ((β) β f),
+ β i, β p : Seminorm π E, Continuous p β§ β k, (q i).comp (f k) β€ p,
+ β i, BddAbove (range fun k β¦ (q i).comp (f k)) β§ Continuous (β¨ k, (q i).comp (f k)) ] := by
+ -- We start by reducing to the case where the target is a seminormed space
+ rw [q.withSeminorms_iff_uniformSpace_eq_iInf.mp hq, uniformEquicontinuous_iInf_rng,
+ equicontinuous_iInf_rng, equicontinuousAt_iInf_rng]
+ refine forall_tfae [_, _, _, _, _] fun i β¦ ?_
+ let _ : SeminormedAddCommGroup F := (q i).toSeminormedAddCommGroup
+ clear u hu hq
+ -- Now we can prove the equivalence in this setting
+ simp only [List.map]
+ tfae_have 1 β 3
+ Β· exact uniformEquicontinuous_of_equicontinuousAt_zero f
+ tfae_have 3 β 2
+ Β· exact UniformEquicontinuous.equicontinuous
+ tfae_have 2 β 1
+ Β· exact fun H β¦ H 0
+ tfae_have 3 β 5
+ Β· intro H
+ have : βαΆ x in π 0, β k, q i (f k x) β€ 1 := by
+ filter_upwards [Metric.equicontinuousAt_iff_right.mp (H.equicontinuous 0) 1 one_pos]
+ with x hx k
+ simpa using (hx k).le
+ have bdd : BddAbove (range fun k β¦ (q i).comp (f k)) :=
+ Seminorm.bddAbove_of_absorbent (absorbent_nhds_zero this)
+ (fun x hx β¦ β¨1, forall_range_iff.mpr hxβ©)
+ rw [β Seminorm.coe_iSup_eq bdd]
+ refine β¨bdd, Seminorm.continuous' (r := 1) ?_β©
+ filter_upwards [this] with x hx
+ simpa only [closedBall_iSup bdd _ one_pos, mem_iInter, mem_closedBall_zero] using hx
+ tfae_have 5 β 4
+ Β· exact fun H β¦ β¨β¨ k, (q i).comp (f k), Seminorm.coe_iSup_eq H.1 βΈ H.2, le_ciSup H.1β©
+ tfae_have 4 β 1 -- This would work over any `NormedField`
+ Β· intro β¨p, hp, hfpβ©
+ exact Metric.equicontinuousAt_of_continuity_modulus p (map_zero p βΈ hp.tendsto 0) _ <|
+ eventually_of_forall fun x k β¦ by simpa using hfp k x
+ tfae_finish
+
+theorem _root_.WithSeminorms.uniformEquicontinuous_iff_exists_continuous_seminorm {ΞΊ : Type _}
+ {q : SeminormFamily πβ F ΞΉ'} [UniformSpace E] [UniformAddGroup E] [u : UniformSpace F]
+ [hu : UniformAddGroup F] (hq : WithSeminorms q) [ContinuousSMul π E]
+ (f : ΞΊ β E βββ[Οββ] F) :
+ UniformEquicontinuous ((β) β f) β
+ β i, β p : Seminorm π E, Continuous p β§ β k, (q i).comp (f k) β€ p :=
+ (hq.equicontinuous_TFAE f).out 2 3
+
+theorem _root_.WithSeminorms.uniformEquicontinuous_iff_bddAbove_and_continuous_iSup {ΞΊ : Type _}
+ {q : SeminormFamily πβ F ΞΉ'} [UniformSpace E] [UniformAddGroup E] [u : UniformSpace F]
+ [hu : UniformAddGroup F] (hq : WithSeminorms q) [ContinuousSMul π E]
+ (f : ΞΊ β E βββ[Οββ] F) :
+ UniformEquicontinuous ((β) β f) β β i,
+ BddAbove (range fun k β¦ (q i).comp (f k)) β§
+ Continuous (β¨ k, (q i).comp (f k)) :=
+ (hq.equicontinuous_TFAE f).out 2 4
+
end Seminorm
section Congr
@@ -770,8 +845,7 @@ lemma bound_of_continuous [Nonempty ΞΉ] [t : TopologicalSpace E] (hp : WithSemin
-- Now forget that `E` already had a topology and view it as the (semi)normed space
-- `(E, s.sup p)`.
clear hp hq t
- let _ : SeminormedAddCommGroup E :=
- (s.sup p).toAddGroupSeminorm.toSeminormedAddCommGroup
+ let _ : SeminormedAddCommGroup E := (s.sup p).toSeminormedAddCommGroup
let _ : NormedSpace π E := { norm_smul_le := fun a b β¦ le_of_eq (map_smul_eq_mul (s.sup p) a b) }
-- The inclusion `hΞ΅` tells us exactly that `q` is *still* continuous for this new topology
have : Continuous q :=
@@ -2,17 +2,14 @@
Copyright (c) 2022 Moritz Doll. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Moritz Doll, Anatole Dedecker
-
-! This file was ported from Lean 3 source module analysis.locally_convex.with_seminorms
-! leanprover-community/mathlib commit b31173ee05c911d61ad6a05bd2196835c932e0ec
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathlib.Analysis.Seminorm
import Mathlib.Analysis.LocallyConvex.Bounded
import Mathlib.Topology.Algebra.FilterBasis
import Mathlib.Topology.Algebra.Module.LocallyConvex
+#align_import analysis.locally_convex.with_seminorms from "leanprover-community/mathlib"@"b31173ee05c911d61ad6a05bd2196835c932e0ec"
+
/-!
# Topology induced by a family of seminorms
This adds WithSeminorms.congr
which allows to replace a family of seminorm by an equivalent one. We use that to prove that one can always replace the family by a directed family (and a nice one if the indexing set is a LocallyFiniteOrderBot
).
@@ -433,8 +433,7 @@ theorem SeminormFamily.withSeminorms_of_hasBasis [TopologicalAddGroup E] (p : Se
#align seminorm_family.with_seminorms_of_has_basis SeminormFamily.withSeminorms_of_hasBasis
theorem SeminormFamily.withSeminorms_iff_nhds_eq_iInf [TopologicalAddGroup E]
- (p : SeminormFamily π E ΞΉ) :
- WithSeminorms p β (π (0 : E)) = β¨
i, (π 0).comap (p i) := by
+ (p : SeminormFamily π E ΞΉ) : WithSeminorms p β (π (0 : E)) = β¨
i, (π 0).comap (p i) := by
rw [β p.filter_eq_iInf]
refine' β¨fun h => _, p.withSeminorms_of_nhdsβ©
rw [h.topology_eq_withSeminorms]
@@ -628,7 +627,7 @@ theorem continuous_iff_continuous_comp {q : SeminormFamily πβ F ΞΉ'} [Topol
#align seminorm.continuous_iff_continuous_comp Seminorm.continuous_iff_continuous_comp
theorem continuous_from_bounded {p : SeminormFamily π E ΞΉ} {q : SeminormFamily πβ F ΞΉ'}
- [TopologicalSpace E] (hp : WithSeminorms p) [TopologicalSpace F] (hq : WithSeminorms q)
+ {_ : TopologicalSpace E} (hp : WithSeminorms p) {_ : TopologicalSpace F} (hq : WithSeminorms q)
(f : E βββ[Οββ] F) (hf : Seminorm.IsBounded p q f) : Continuous f := by
have : TopologicalAddGroup E := hp.topologicalAddGroup
refine continuous_of_continuous_comp hq _ fun i => ?_
@@ -661,6 +660,68 @@ theorem cont_normedSpace_to_withSeminorms (E) [SeminormedAddCommGroup E] [Normed
end Seminorm
+section Congr
+
+namespace WithSeminorms
+
+variable [Nonempty ΞΉ] [Nonempty ΞΉ']
+variable [NormedField π] [AddCommGroup E] [Module π E]
+variable [NormedField πβ] [AddCommGroup F] [Module πβ F]
+variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
+
+/-- Two families of seminorms `p` and `q` on the same space generate the same topology
+if each `p i` is bounded by some `C β’ Finset.sup s q` and vice-versa.
+
+We formulate these boundedness assumptions as `Seminorm.IsBounded q p LinearMap.id` (and
+vice-versa) to reuse the API. Furthermore, we don't actually state it as an equality of topologies
+but as a way to deduce `WithSeminorms q` from `WithSeminorms p`, since this should be more
+useful in practice. -/
+protected theorem congr {p : SeminormFamily π E ΞΉ} {q : SeminormFamily π E ΞΉ'}
+ [t : TopologicalSpace E] (hp : WithSeminorms p) (hpq : Seminorm.IsBounded p q LinearMap.id)
+ (hqp : Seminorm.IsBounded q p LinearMap.id) : WithSeminorms q := by
+ constructor
+ rw [hp.topology_eq_withSeminorms]
+ clear hp t
+ refine le_antisymm ?_ ?_ <;>
+ rw [β continuous_id_iff_le] <;>
+ refine continuous_from_bounded (.mk (topology := _) rfl) (.mk (topology := _) rfl)
+ LinearMap.id (by assumption)
+
+protected theorem finset_sups {p : SeminormFamily π E ΞΉ} [TopologicalSpace E]
+ (hp : WithSeminorms p) : WithSeminorms (fun s : Finset ΞΉ β¦ s.sup p) := by
+ refine hp.congr ?_ ?_
+ Β· intro s
+ refine β¨s, 1, ?_β©
+ rw [one_smul]
+ rfl
+ Β· intro i
+ refine β¨{{i}}, 1, ?_β©
+ rw [Finset.sup_singleton, Finset.sup_singleton, one_smul]
+ rfl
+
+protected theorem partial_sups [Preorder ΞΉ] [LocallyFiniteOrderBot ΞΉ] {p : SeminormFamily π E ΞΉ}
+ [TopologicalSpace E] (hp : WithSeminorms p) : WithSeminorms (fun i β¦ (Finset.Iic i).sup p) := by
+ refine hp.congr ?_ ?_
+ Β· intro i
+ refine β¨Finset.Iic i, 1, ?_β©
+ rw [one_smul]
+ rfl
+ Β· intro i
+ refine β¨{i}, 1, ?_β©
+ rw [Finset.sup_singleton, one_smul]
+ exact (Finset.le_sup (Finset.mem_Iic.mpr le_rfl) : p i β€ (Finset.Iic i).sup p)
+
+protected theorem congr_equiv {p : SeminormFamily π E ΞΉ} [t : TopologicalSpace E]
+ (hp : WithSeminorms p) (e : ΞΉ' β ΞΉ) : WithSeminorms (p β e) := by
+ refine hp.congr ?_ ?_ <;>
+ intro i <;>
+ [use {e i}, 1; use {e.symm i}, 1] <;>
+ simp
+
+end WithSeminorms
+
+end Congr
+
end continuous_of_bounded
section bounded_of_continuous
@@ -288,6 +288,10 @@ theorem WithSeminorms.topologicalAddGroup (hp : WithSeminorms p) : TopologicalAd
exact AddGroupFilterBasis.isTopologicalAddGroup _
#align with_seminorms.topological_add_group WithSeminorms.topologicalAddGroup
+theorem WithSeminorms.continuousSMul (hp : WithSeminorms p) : ContinuousSMul π E := by
+ rw [hp.withSeminorms_eq]
+ exact ModuleFilterBasis.continuousSMul _
+
theorem WithSeminorms.hasBasis (hp : WithSeminorms p) :
(π (0 : E)).HasBasis (fun s : Set E => s β p.basisSets) id := by
rw [congr_fun (congr_arg (@nhds E) hp.1) 0]
@@ -309,7 +313,7 @@ theorem WithSeminorms.hasBasis_zero_ball (hp : WithSeminorms p) :
theorem WithSeminorms.hasBasis_ball (hp : WithSeminorms p) {x : E} :
(π (x : E)).HasBasis
(fun sr : Finset ΞΉ Γ β => 0 < sr.2) fun sr => (sr.1.sup p).ball x sr.2 := by
- haveI : TopologicalAddGroup E := hp.topologicalAddGroup
+ have : TopologicalAddGroup E := hp.topologicalAddGroup
rw [β map_add_left_nhds_zero]
convert hp.hasBasis_zero_ball.map ((Β· + Β·) x) using 1
ext sr : 1
@@ -339,7 +343,7 @@ and `TopologicalAddGroup.t3Space` -/
/-- A separating family of seminorms induces a Tβ topology. -/
theorem WithSeminorms.T1_of_separating (hp : WithSeminorms p)
(h : β x, x β 0 β β i, p i x β 0) : T1Space E := by
- haveI := hp.topologicalAddGroup
+ have := hp.topologicalAddGroup
refine' TopologicalAddGroup.t1Space _ _
rw [β isOpen_compl_iff, hp.isOpen_iff_mem_balls]
rintro x (hx : x β 0)
@@ -412,9 +416,9 @@ variable [Nonempty ΞΉ]
section TopologicalSpace
-variable [t : TopologicalSpace E] [TopologicalAddGroup E]
+variable [t : TopologicalSpace E]
-theorem SeminormFamily.withSeminorms_of_nhds (p : SeminormFamily π E ΞΉ)
+theorem SeminormFamily.withSeminorms_of_nhds [TopologicalAddGroup E] (p : SeminormFamily π E ΞΉ)
(h : π (0 : E) = p.moduleFilterBasis.toFilterBasis.filter) : WithSeminorms p := by
refine'
β¨TopologicalAddGroup.ext inferInstance p.addGroupFilterBasis.isTopologicalAddGroup _β©
@@ -422,13 +426,14 @@ theorem SeminormFamily.withSeminorms_of_nhds (p : SeminormFamily π E ΞΉ)
exact h
#align seminorm_family.with_seminorms_of_nhds SeminormFamily.withSeminorms_of_nhds
-theorem SeminormFamily.withSeminorms_of_hasBasis (p : SeminormFamily π E ΞΉ)
+theorem SeminormFamily.withSeminorms_of_hasBasis [TopologicalAddGroup E] (p : SeminormFamily π E ΞΉ)
(h : (π (0 : E)).HasBasis (fun s : Set E => s β p.basisSets) id) : WithSeminorms p :=
p.withSeminorms_of_nhds <|
Filter.HasBasis.eq_of_same_basis h p.addGroupFilterBasis.toFilterBasis.hasBasis
#align seminorm_family.with_seminorms_of_has_basis SeminormFamily.withSeminorms_of_hasBasis
-theorem SeminormFamily.withSeminorms_iff_nhds_eq_iInf (p : SeminormFamily π E ΞΉ) :
+theorem SeminormFamily.withSeminorms_iff_nhds_eq_iInf [TopologicalAddGroup E]
+ (p : SeminormFamily π E ΞΉ) :
WithSeminorms p β (π (0 : E)) = β¨
i, (π 0).comap (p i) := by
rw [β p.filter_eq_iInf]
refine' β¨fun h => _, p.withSeminorms_of_nhdsβ©
@@ -436,17 +441,10 @@ theorem SeminormFamily.withSeminorms_iff_nhds_eq_iInf (p : SeminormFamily π E
exact AddGroupFilterBasis.nhds_zero_eq _
#align seminorm_family.with_seminorms_iff_nhds_eq_infi SeminormFamily.withSeminorms_iff_nhds_eq_iInf
-theorem WithSeminorms.continuous_seminorm [NontriviallyNormedField π] [Module π E]
- [ContinuousConstSMul π E] {p : SeminormFamily π E ΞΉ} (hp : WithSeminorms p) (i : ΞΉ) :
- Continuous (p i) := by
- refine' Seminorm.continuous (r := 1) _
- rw [p.withSeminorms_iff_nhds_eq_iInf.mp hp, ball_zero_eq_preimage_ball]
- exact Filter.mem_iInf_of_mem i (Filter.preimage_mem_comap <| Metric.ball_mem_nhds _ one_pos)
-#align with_seminorms.continuous_seminorm WithSeminorms.continuous_seminorm
-
/-- The topology induced by a family of seminorms is exactly the infimum of the ones induced by
each seminorm individually. We express this as a characterization of `WithSeminorms p`. -/
-theorem SeminormFamily.withSeminorms_iff_topologicalSpace_eq_iInf (p : SeminormFamily π E ΞΉ) :
+theorem SeminormFamily.withSeminorms_iff_topologicalSpace_eq_iInf [TopologicalAddGroup E]
+ (p : SeminormFamily π E ΞΉ) :
WithSeminorms p β
t = β¨
i, (p i).toSeminormedAddCommGroup.toUniformSpace.toTopologicalSpace := by
rw [p.withSeminorms_iff_nhds_eq_iInf,
@@ -459,6 +457,13 @@ theorem SeminormFamily.withSeminorms_iff_topologicalSpace_eq_iInf (p : SeminormF
exact @comap_norm_nhds_zero _ (p i).toSeminormedAddGroup
#align seminorm_family.with_seminorms_iff_topological_space_eq_infi SeminormFamily.withSeminorms_iff_topologicalSpace_eq_iInf
+theorem WithSeminorms.continuous_seminorm {p : SeminormFamily π E ΞΉ} (hp : WithSeminorms p)
+ (i : ΞΉ) : Continuous (p i) := by
+ have := hp.topologicalAddGroup
+ rw [p.withSeminorms_iff_topologicalSpace_eq_iInf.mp hp]
+ exact continuous_iInf_dom (@continuous_norm _ (p i).toSeminormedAddGroup)
+#align with_seminorms.continuous_seminorm WithSeminorms.continuous_seminorm
+
end TopologicalSpace
/-- The uniform structure induced by a family of seminorms is exactly the infimum of the ones
@@ -602,8 +607,9 @@ variable {Οββ : π β+* πβ} [RingHomIsometric Οββ]
variable [Nonempty ΞΉ] [Nonempty ΞΉ']
theorem continuous_of_continuous_comp {q : SeminormFamily πβ F ΞΉ'} [TopologicalSpace E]
- [TopologicalAddGroup E] [TopologicalSpace F] [TopologicalAddGroup F] (hq : WithSeminorms q)
+ [TopologicalAddGroup E] [TopologicalSpace F] (hq : WithSeminorms q)
(f : E βββ[Οββ] F) (hf : β i, Continuous ((q i).comp f)) : Continuous f := by
+ have : TopologicalAddGroup F := hq.topologicalAddGroup
refine' continuous_of_continuousAt_zero f _
simp_rw [ContinuousAt, f.map_zero, q.withSeminorms_iff_nhds_eq_iInf.mp hq, Filter.tendsto_iInf,
Filter.tendsto_comap_iff]
@@ -613,8 +619,8 @@ theorem continuous_of_continuous_comp {q : SeminormFamily πβ F ΞΉ'} [Topolo
#align seminorm.continuous_of_continuous_comp Seminorm.continuous_of_continuous_comp
theorem continuous_iff_continuous_comp {q : SeminormFamily πβ F ΞΉ'} [TopologicalSpace E]
- [TopologicalAddGroup E] [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousConstSMul πβ F]
- (hq : WithSeminorms q) (f : E βββ[Οββ] F) : Continuous f β β i, Continuous ((q i).comp f) :=
+ [TopologicalAddGroup E] [TopologicalSpace F] (hq : WithSeminorms q) (f : E βββ[Οββ] F) :
+ Continuous f β β i, Continuous ((q i).comp f) :=
-- Porting note: if we *don't* use dot notation for `Continuous.comp`, Lean tries to show
-- continuity of `((q i).comp f) β id` because it doesn't see that `((q i).comp f)` is
-- actually a composition of functions.
@@ -622,27 +628,23 @@ theorem continuous_iff_continuous_comp {q : SeminormFamily πβ F ΞΉ'} [Topol
#align seminorm.continuous_iff_continuous_comp Seminorm.continuous_iff_continuous_comp
theorem continuous_from_bounded {p : SeminormFamily π E ΞΉ} {q : SeminormFamily πβ F ΞΉ'}
- [TopologicalSpace E] [TopologicalAddGroup E] (hp : WithSeminorms p) [TopologicalSpace F]
- [TopologicalAddGroup F] (hq : WithSeminorms q) (f : E βββ[Οββ] F)
- (hf : Seminorm.IsBounded p q f) : Continuous f := by
- refine' continuous_of_continuous_comp hq _ fun i => Seminorm.continuous_of_continuousAt_zero _
- rw [Metric.continuousAt_iff', map_zero]
- intro r hr
- rcases hf i with β¨sβ, C, hfβ©
- have hC' : 0 < C + 1 := by positivity
- rw [hp.hasBasis.eventually_iff]
- -- Porting note: `div_pos hr (by norm_cast)` was `by positivity`
- refine' β¨(sβ.sup p).ball 0 (r / (C + 1)), p.basisSets_mem _ (div_pos hr (by norm_cast)), _β©
- simp_rw [β Metric.mem_ball, β mem_preimage, β ball_zero_eq_preimage_ball]
- refine' Subset.trans _ (ball_antitone hf)
- norm_cast
- rw [β ball_smul (sβ.sup p) hC']
- refine' ball_antitone (smul_le_smul le_rfl _)
- simp only [le_add_iff_nonneg_right, zero_le']
+ [TopologicalSpace E] (hp : WithSeminorms p) [TopologicalSpace F] (hq : WithSeminorms q)
+ (f : E βββ[Οββ] F) (hf : Seminorm.IsBounded p q f) : Continuous f := by
+ have : TopologicalAddGroup E := hp.topologicalAddGroup
+ refine continuous_of_continuous_comp hq _ fun i => ?_
+ rcases hf i with β¨s, C, hCβ©
+ rw [β Seminorm.finset_sup_smul] at hC
+ -- Note: we deduce continuouty of `s.sup (C β’ p)` from that of `β i in s, C β’ p i`.
+ -- The reason is that there is no `continuous_finset_sup`, and even if it were we couldn't
+ -- really use it since `β` is not an `OrderBot`.
+ refine Seminorm.continuous_of_le ?_ (hC.trans <| Seminorm.finset_sup_le_sum _ _)
+ change Continuous (fun x β¦ Seminorm.coeFnAddMonoidHom _ _ (β i in s, C β’ p i) x)
+ simp_rw [map_sum, Finset.sum_apply]
+ exact (continuous_finset_sum _ fun i _ β¦ (hp.continuous_seminorm i).const_smul (C : β))
#align seminorm.continuous_from_bounded Seminorm.continuous_from_bounded
theorem cont_withSeminorms_normedSpace (F) [SeminormedAddCommGroup F] [NormedSpace πβ F]
- [UniformSpace E] [UniformAddGroup E] {p : ΞΉ β Seminorm π E} (hp : WithSeminorms p)
+ [TopologicalSpace E] {p : ΞΉ β Seminorm π E} (hp : WithSeminorms p)
(f : E βββ[Οββ] F) (hf : β (s : Finset ΞΉ) (C : ββ₯0), (normSeminorm πβ F).comp f β€ C β’ s.sup p) :
Continuous f := by
rw [β Seminorm.isBounded_const (Fin 1)] at hf
@@ -650,7 +652,7 @@ theorem cont_withSeminorms_normedSpace (F) [SeminormedAddCommGroup F] [NormedSpa
#align seminorm.cont_with_seminorms_normed_space Seminorm.cont_withSeminorms_normedSpace
theorem cont_normedSpace_to_withSeminorms (E) [SeminormedAddCommGroup E] [NormedSpace π E]
- [UniformSpace F] [UniformAddGroup F] {q : ΞΉ β Seminorm πβ F} (hq : WithSeminorms q)
+ [TopologicalSpace F] {q : ΞΉ β Seminorm πβ F} (hq : WithSeminorms q)
(f : E βββ[Οββ] F) (hf : β i : ΞΉ, β C : ββ₯0, (q i).comp f β€ C β’ normSeminorm π E) :
Continuous f := by
rw [β Seminorm.const_isBounded (Fin 1)] at hf
@@ -710,9 +712,9 @@ lemma bound_of_continuous [Nonempty ΞΉ] [t : TopologicalSpace E] (hp : WithSemin
-- Now forget that `E` already had a topology and view it as the (semi)normed space
-- `(E, s.sup p)`.
clear hp hq t
- letI : SeminormedAddCommGroup E :=
+ let _ : SeminormedAddCommGroup E :=
(s.sup p).toAddGroupSeminorm.toSeminormedAddCommGroup
- letI : NormedSpace π E := { norm_smul_le := fun a b β¦ le_of_eq (map_smul_eq_mul (s.sup p) a b) }
+ let _ : NormedSpace π E := { norm_smul_le := fun a b β¦ le_of_eq (map_smul_eq_mul (s.sup p) a b) }
-- The inclusion `hΞ΅` tells us exactly that `q` is *still* continuous for this new topology
have : Continuous q :=
Seminorm.continuous (r := 1) (mem_of_superset (Metric.ball_mem_nhds _ Ξ΅_pos) hΞ΅)
@@ -732,10 +734,11 @@ section LocallyConvexSpace
open LocallyConvexSpace
variable [Nonempty ΞΉ] [NormedField π] [NormedSpace β π] [AddCommGroup E] [Module π E] [Module β E]
- [IsScalarTower β π E] [TopologicalSpace E] [TopologicalAddGroup E]
+ [IsScalarTower β π E] [TopologicalSpace E]
theorem WithSeminorms.toLocallyConvexSpace {p : SeminormFamily π E ΞΉ} (hp : WithSeminorms p) :
LocallyConvexSpace β E := by
+ have := hp.topologicalAddGroup
apply ofBasisZero β E id fun s => s β p.basisSets
Β· rw [hp.1, AddGroupFilterBasis.nhds_eq _, AddGroupFilterBasis.N_zero]
exact FilterBasis.hasBasis _
@@ -792,13 +795,14 @@ theorem SeminormFamily.finset_sup_comp (q : SeminormFamily πβ F ΞΉ) (s : Fi
rfl
#align seminorm_family.finset_sup_comp SeminormFamily.finset_sup_comp
-variable [TopologicalSpace F] [TopologicalAddGroup F]
+variable [TopologicalSpace F]
theorem LinearMap.withSeminorms_induced [hΞΉ : Nonempty ΞΉ] {q : SeminormFamily πβ F ΞΉ}
(hq : WithSeminorms q) (f : E βββ[Οββ] F) :
WithSeminorms (topology := induced f inferInstance) (q.comp f) := by
- letI : TopologicalSpace E := induced f inferInstance
- letI : TopologicalAddGroup E := topologicalAddGroup_induced f
+ have := hq.topologicalAddGroup
+ let _ : TopologicalSpace E := induced f inferInstance
+ have : TopologicalAddGroup E := topologicalAddGroup_induced f
rw [(q.comp f).withSeminorms_iff_nhds_eq_iInf, nhds_induced, map_zero,
q.withSeminorms_iff_nhds_eq_iInf.mp hq, Filter.comap_iInf]
refine' iInf_congr fun i => _
@@ -820,7 +824,7 @@ theorem withSeminorms_iInf {ΞΊ : ΞΉ β Type _} [Nonempty ((i : ΞΉ) Γ ΞΊ i)] [
{p : (i : ΞΉ) β SeminormFamily π E (ΞΊ i)} {t : ΞΉ β TopologicalSpace E}
[β i, @TopologicalAddGroup E (t i) _] (hp : β i, WithSeminorms (topology := t i) (p i)) :
WithSeminorms (topology := β¨
i, t i) (SeminormFamily.sigma p) := by
- haveI : @TopologicalAddGroup E (β¨
i, t i) _ := topologicalAddGroup_iInf (fun i β¦ inferInstance)
+ have : @TopologicalAddGroup E (β¨
i, t i) _ := topologicalAddGroup_iInf (fun i β¦ inferInstance)
simp_rw [@SeminormFamily.withSeminorms_iff_topologicalSpace_eq_iInf _ _ _ _ _ _ _ (_)] at hp β’
rw [iInf_sigma]
exact iInf_congr hp
@@ -833,16 +837,19 @@ variable [NontriviallyNormedField π] [AddCommGroup E] [Module π E] [Nonemp
variable {p : SeminormFamily π E ΞΉ}
-variable [UniformSpace E] [UniformAddGroup E]
+variable [TopologicalSpace E]
/-- If the topology of a space is induced by a countable family of seminorms, then the topology
is first countable. -/
theorem WithSeminorms.first_countable (hp : WithSeminorms p) :
TopologicalSpace.FirstCountableTopology E := by
+ have := hp.topologicalAddGroup
+ let _ : UniformSpace E := TopologicalAddGroup.toUniformSpace E
+ have : UniformAddGroup E := comm_topologicalAddGroup_is_uniform
have : (π (0 : E)).IsCountablyGenerated := by
rw [p.withSeminorms_iff_nhds_eq_iInf.mp hp]
exact Filter.iInf.isCountablyGenerated _
- haveI : (uniformity E).IsCountablyGenerated := UniformAddGroup.uniformity_countably_generated
+ have : (uniformity E).IsCountablyGenerated := UniformAddGroup.uniformity_countably_generated
exact UniformSpace.firstCountableTopology E
#align with_seminorms.first_countable WithSeminorms.first_countable
WithSeminorms
for infimum of topologies (#5816)
@@ -270,8 +270,8 @@ section Topology
variable [NormedField π] [AddCommGroup E] [Module π E] [Nonempty ΞΉ]
/-- The proposition that the topology of `E` is induced by a family of seminorms `p`. -/
-structure WithSeminorms (p : SeminormFamily π E ΞΉ) [t : TopologicalSpace E] : Prop where
- topology_eq_withSeminorms : t = p.moduleFilterBasis.topology
+structure WithSeminorms (p : SeminormFamily π E ΞΉ) [topology : TopologicalSpace E] : Prop where
+ topology_eq_withSeminorms : topology = p.moduleFilterBasis.topology
#align with_seminorms WithSeminorms
theorem WithSeminorms.withSeminorms_eq {p : SeminormFamily π E ΞΉ} [t : TopologicalSpace E]
@@ -448,8 +448,7 @@ theorem WithSeminorms.continuous_seminorm [NontriviallyNormedField π] [Module
each seminorm individually. We express this as a characterization of `WithSeminorms p`. -/
theorem SeminormFamily.withSeminorms_iff_topologicalSpace_eq_iInf (p : SeminormFamily π E ΞΉ) :
WithSeminorms p β
- t = β¨
i,
- (p i).toAddGroupSeminorm.toSeminormedAddCommGroup.toUniformSpace.toTopologicalSpace := by
+ t = β¨
i, (p i).toSeminormedAddCommGroup.toUniformSpace.toTopologicalSpace := by
rw [p.withSeminorms_iff_nhds_eq_iInf,
TopologicalAddGroup.ext_iff inferInstance (topologicalAddGroup_iInf fun i => inferInstance),
nhds_iInf]
@@ -457,7 +456,7 @@ theorem SeminormFamily.withSeminorms_iff_topologicalSpace_eq_iInf (p : SeminormF
refine Eq.to_iff ?_
congr
funext i
- exact @comap_norm_nhds_zero _ (p i).toAddGroupSeminorm.toSeminormedAddGroup
+ exact @comap_norm_nhds_zero _ (p i).toSeminormedAddGroup
#align seminorm_family.with_seminorms_iff_topological_space_eq_infi SeminormFamily.withSeminorms_iff_topologicalSpace_eq_iInf
end TopologicalSpace
@@ -467,8 +466,7 @@ induced by each seminorm individually. We express this as a characterization of
`WithSeminorms p`. -/
theorem SeminormFamily.withSeminorms_iff_uniformSpace_eq_iInf [u : UniformSpace E]
[UniformAddGroup E] (p : SeminormFamily π E ΞΉ) :
- WithSeminorms p β
- u = β¨
i, (p i).toAddGroupSeminorm.toSeminormedAddCommGroup.toUniformSpace := by
+ WithSeminorms p β u = β¨
i, (p i).toSeminormedAddCommGroup.toUniformSpace := by
rw [p.withSeminorms_iff_nhds_eq_iInf,
UniformAddGroup.ext_iff inferInstance (uniformAddGroup_iInf fun i => inferInstance),
toTopologicalSpace_iInf, nhds_iInf]
@@ -798,7 +796,7 @@ variable [TopologicalSpace F] [TopologicalAddGroup F]
theorem LinearMap.withSeminorms_induced [hΞΉ : Nonempty ΞΉ] {q : SeminormFamily πβ F ΞΉ}
(hq : WithSeminorms q) (f : E βββ[Οββ] F) :
- @WithSeminorms π E ΞΉ _ _ _ _ (q.comp f) (induced f inferInstance) := by
+ WithSeminorms (topology := induced f inferInstance) (q.comp f) := by
letI : TopologicalSpace E := induced f inferInstance
letI : TopologicalAddGroup E := topologicalAddGroup_induced f
rw [(q.comp f).withSeminorms_iff_nhds_eq_iInf, nhds_induced, map_zero,
@@ -813,6 +811,20 @@ theorem Inducing.withSeminorms [hΞΉ : Nonempty ΞΉ] {q : SeminormFamily πβ F
exact f.withSeminorms_induced hq
#align inducing.with_seminorms Inducing.withSeminorms
+/-- (Disjoint) union of seminorm families. -/
+protected def SeminormFamily.sigma {ΞΊ : ΞΉ β Type _} (p : (i : ΞΉ) β SeminormFamily π E (ΞΊ i)) :
+ SeminormFamily π E ((i : ΞΉ) Γ ΞΊ i) :=
+ fun β¨i, kβ© => p i k
+
+theorem withSeminorms_iInf {ΞΊ : ΞΉ β Type _} [Nonempty ((i : ΞΉ) Γ ΞΊ i)] [β i, Nonempty (ΞΊ i)]
+ {p : (i : ΞΉ) β SeminormFamily π E (ΞΊ i)} {t : ΞΉ β TopologicalSpace E}
+ [β i, @TopologicalAddGroup E (t i) _] (hp : β i, WithSeminorms (topology := t i) (p i)) :
+ WithSeminorms (topology := β¨
i, t i) (SeminormFamily.sigma p) := by
+ haveI : @TopologicalAddGroup E (β¨
i, t i) _ := topologicalAddGroup_iInf (fun i β¦ inferInstance)
+ simp_rw [@SeminormFamily.withSeminorms_iff_topologicalSpace_eq_iInf _ _ _ _ _ _ _ (_)] at hp β’
+ rw [iInf_sigma]
+ exact iInf_congr hp
+
end TopologicalConstructions
section TopologicalProperties
This removes a chance to infer an argument, but I think that's a fairly good use case for using the new named arguments, because adding (r := _)
to specify a radius feels completely right.
@@ -439,7 +439,7 @@ theorem SeminormFamily.withSeminorms_iff_nhds_eq_iInf (p : SeminormFamily π E
theorem WithSeminorms.continuous_seminorm [NontriviallyNormedField π] [Module π E]
[ContinuousConstSMul π E] {p : SeminormFamily π E ΞΉ} (hp : WithSeminorms p) (i : ΞΉ) :
Continuous (p i) := by
- refine' Seminorm.continuous one_pos _
+ refine' Seminorm.continuous (r := 1) _
rw [p.withSeminorms_iff_nhds_eq_iInf.mp hp, ball_zero_eq_preimage_ball]
exact Filter.mem_iInf_of_mem i (Filter.preimage_mem_comap <| Metric.ball_mem_nhds _ one_pos)
#align with_seminorms.continuous_seminorm WithSeminorms.continuous_seminorm
@@ -717,7 +717,7 @@ lemma bound_of_continuous [Nonempty ΞΉ] [t : TopologicalSpace E] (hp : WithSemin
letI : NormedSpace π E := { norm_smul_le := fun a b β¦ le_of_eq (map_smul_eq_mul (s.sup p) a b) }
-- The inclusion `hΞ΅` tells us exactly that `q` is *still* continuous for this new topology
have : Continuous q :=
- Seminorm.continuous one_pos (mem_of_superset (Metric.ball_mem_nhds _ Ξ΅_pos) hΞ΅)
+ Seminorm.continuous (r := 1) (mem_of_superset (Metric.ball_mem_nhds _ Ξ΅_pos) hΞ΅)
-- Hence we can conclude by applying `bound_of_continuous_normed_space`.
rcases bound_of_continuous_normedSpace q this with β¨C, C_pos, hCβ©
exact β¨s, β¨C, C_pos.leβ©, fun H β¦ C_pos.ne.symm (congr_arg NNReal.toReal H), hCβ©
This PR is the result of running
find . -type f -name "*.lean" -exec sed -i -E 's/^( +)\. /\1Β· /' {} \;
find . -type f -name "*.lean" -exec sed -i -E 'N;s/^( +Β·)\n +(.*)$/\1 \2/;P;D' {} \;
which firstly replaces .
focusing dots with Β·
and secondly removes isolated instances of such dots, unifying them with the following line. A new rule is placed in the style linter to verify this.
@@ -692,9 +692,9 @@ lemma bound_of_continuous_normedSpace (q : Seminorm π F)
have : 0 < βcβ / Ξ΅ := by positivity
refine β¨βcβ / Ξ΅, this, fun x β¦ ?_β©
by_cases hx : βxβ = 0
- . rw [hx, mul_zero]
+ Β· rw [hx, mul_zero]
exact le_of_eq (map_eq_zero_of_norm_zero q hq hx)
- . refine (normSeminorm π F).bound_of_shell q Ξ΅_pos hc (fun x hle hlt β¦ ?_) hx
+ Β· refine (normSeminorm π F).bound_of_shell q Ξ΅_pos hc (fun x hle hlt β¦ ?_) hx
refine (le_of_lt <| show q x < _ from hΞ΅ hlt).trans ?_
rwa [β div_le_iff' this, one_div_div]
@@ -74,7 +74,7 @@ namespace SeminormFamily
/-- The sets of a filter basis for the neighborhood filter of 0. -/
def basisSets (p : SeminormFamily π E ΞΉ) : Set (Set E) :=
- β (s : Finset ΞΉ) (r) (_ : 0 < r), singleton <| ball (s.sup p) (0 : E) r
+ β (s : Finset ΞΉ) (r) (_ : 0 < r), singleton (ball (s.sup p) (0 : E) r)
#align seminorm_family.basis_sets SeminormFamily.basisSets
variable (p : SeminormFamily π E ΞΉ)
This shows that, if the topology of E
is defined by some family of seminorms p
, then a seminorm q
is continuous iff β s : Finset ΞΉ, β C : ββ₯0, C β 0 β§ q β€ C β’ s.sup p
. Via Seminorm.continuous_iff_continuous_comp this gives the converse of Seminorm.continuous_from_bounded and hence a characterization of continuous linear maps between such spaces.
To do that, we restate all of the "bound of shell" lemmas in terms of seminorms, which needs changing some imports, but I've checked the current state of the port and this should not cause too much trouble since most of the touched files are already ported so we can changes the imports in mathlib4 too.
The WithSeminorms
file needs a naming/dot notation refactor at some point, because the naming scheme is neither predictable nor convenient to use, but this PR is already large enough.
@@ -51,7 +51,7 @@ seminorm, locally convex
-/
-open NormedField Set Seminorm TopologicalSpace
+open NormedField Set Seminorm TopologicalSpace Filter
open BigOperators NNReal Pointwise Topology
@@ -584,7 +584,8 @@ set_option linter.uppercaseLean3 false in
end NontriviallyNormedField
-section ContinuousBounded
+-- TODO: the names in this section are not very predictable
+section continuous_of_bounded
namespace Seminorm
@@ -660,7 +661,73 @@ theorem cont_normedSpace_to_withSeminorms (E) [SeminormedAddCommGroup E] [Normed
end Seminorm
-end ContinuousBounded
+end continuous_of_bounded
+
+section bounded_of_continuous
+
+namespace Seminorm
+
+variable [NontriviallyNormedField π] [AddCommGroup E] [Module π E]
+ [SeminormedAddCommGroup F] [NormedSpace π F]
+ {p : SeminormFamily π E ΞΉ}
+
+/-- In a semi-`NormedSpace`, a continuous seminorm is zero on elements of norm `0`. -/
+lemma map_eq_zero_of_norm_zero (q : Seminorm π F)
+ (hq : Continuous q) {x : F} (hx : βxβ = 0) : q x = 0 :=
+ (map_zero q) βΈ
+ ((specializes_iff_mem_closure.mpr $ mem_closure_zero_iff_norm.mpr hx).map hq).eq.symm
+
+/-- Let `F` be a semi-`NormedSpace` over a `NontriviallyNormedField`, and let `q` be a
+seminorm on `F`. If `q` is continuous, then it is uniformly controlled by the norm, that is there
+is some `C > 0` such that `β x, q x β€ C * βxβ`.
+The continuity ensures boundedness on a ball of some radius `Ξ΅`. The nontriviality of the
+norm is then used to rescale any element into an element of norm in `[Ξ΅/C, Ξ΅[`, thus with a
+controlled image by `q`. The control of `q` at the original element follows by rescaling. -/
+lemma bound_of_continuous_normedSpace (q : Seminorm π F)
+ (hq : Continuous q) : β C, 0 < C β§ (β x : F, q x β€ C * βxβ) := by
+ have hq' : Tendsto q (π 0) (π 0) := map_zero q βΈ hq.tendsto 0
+ rcases NormedAddCommGroup.nhds_zero_basis_norm_lt.mem_iff.mp (hq' $ Iio_mem_nhds one_pos)
+ with β¨Ξ΅, Ξ΅_pos, hΞ΅β©
+ rcases NormedField.exists_one_lt_norm π with β¨c, hcβ©
+ have : 0 < βcβ / Ξ΅ := by positivity
+ refine β¨βcβ / Ξ΅, this, fun x β¦ ?_β©
+ by_cases hx : βxβ = 0
+ . rw [hx, mul_zero]
+ exact le_of_eq (map_eq_zero_of_norm_zero q hq hx)
+ . refine (normSeminorm π F).bound_of_shell q Ξ΅_pos hc (fun x hle hlt β¦ ?_) hx
+ refine (le_of_lt <| show q x < _ from hΞ΅ hlt).trans ?_
+ rwa [β div_le_iff' this, one_div_div]
+
+/-- Let `E` be a topological vector space (over a `NontriviallyNormedField`) whose topology is
+generated by some family of seminorms `p`, and let `q` be a seminorm on `E`. If `q` is continuous,
+then it is uniformly controlled by *finitely many* seminorms of `p`, that is there
+is some finset `s` of the index set and some `C > 0` such that `q β€ C β’ s.sup p`. -/
+lemma bound_of_continuous [Nonempty ΞΉ] [t : TopologicalSpace E] (hp : WithSeminorms p)
+ (q : Seminorm π E) (hq : Continuous q) :
+ β s : Finset ΞΉ, β C : ββ₯0, C β 0 β§ q β€ C β’ s.sup p := by
+ -- The continuity of `q` gives us a finset `s` and a real `Ξ΅ > 0`
+ -- such that `hΞ΅ : (s.sup p).ball 0 Ξ΅ β q.ball 0 1`.
+ rcases hp.hasBasis.mem_iff.mp (ball_mem_nhds hq one_pos) with β¨V, hV, hΞ΅β©
+ rcases p.basisSets_iff.mp hV with β¨s, Ξ΅, Ξ΅_pos, rflβ©
+ -- Now forget that `E` already had a topology and view it as the (semi)normed space
+ -- `(E, s.sup p)`.
+ clear hp hq t
+ letI : SeminormedAddCommGroup E :=
+ (s.sup p).toAddGroupSeminorm.toSeminormedAddCommGroup
+ letI : NormedSpace π E := { norm_smul_le := fun a b β¦ le_of_eq (map_smul_eq_mul (s.sup p) a b) }
+ -- The inclusion `hΞ΅` tells us exactly that `q` is *still* continuous for this new topology
+ have : Continuous q :=
+ Seminorm.continuous one_pos (mem_of_superset (Metric.ball_mem_nhds _ Ξ΅_pos) hΞ΅)
+ -- Hence we can conclude by applying `bound_of_continuous_normed_space`.
+ rcases bound_of_continuous_normedSpace q this with β¨C, C_pos, hCβ©
+ exact β¨s, β¨C, C_pos.leβ©, fun H β¦ C_pos.ne.symm (congr_arg NNReal.toReal H), hCβ©
+ -- Note that the key ingredient for this proof is that, by scaling arguments hidden in
+ -- `seminorm.continuous`, we only have to look at the `q`-ball of radius one, and the `s` we get
+ -- from that will automatically work for all other radii.
+
+end Seminorm
+
+end bounded_of_continuous
section LocallyConvexSpace
@@ -353,9 +353,6 @@ theorem WithSeminorms.separating_of_T1 [T1Space E] (hp : WithSeminorms p) (x : E
β i, p i x β 0 := by
have := ((t1Space_TFAE E).out 0 9).mp (inferInstanceAs <| T1Space E)
by_contra' h
- -- In theory, `by_contra'` does `push_neg`, but it doesn't, and `push_neg` on his own
- -- does nothing... So we have to do `simp` by hand.
- simp only [not_exists, not_not] at h
refine' hx (this _)
rw [hp.hasBasis_zero_ball.specializes_iff]
rintro β¨s, rβ© (hr : 0 < r)
@@ -230,7 +230,7 @@ def IsBounded (p : ΞΉ β Seminorm π E) (q : ΞΉ' β Seminorm πβ F) (f :
theorem isBounded_const (ΞΉ' : Type _) [Nonempty ΞΉ'] {p : ΞΉ β Seminorm π E} {q : Seminorm πβ F}
(f : E βββ[Οββ] F) :
- IsBounded p (fun _ : ΞΉ' => q) f β β (s : Finset ΞΉ)(C : ββ₯0), q.comp f β€ C β’ s.sup p := by
+ IsBounded p (fun _ : ΞΉ' => q) f β β (s : Finset ΞΉ) (C : ββ₯0), q.comp f β€ C β’ s.sup p := by
simp only [IsBounded, forall_const]
#align seminorm.is_bounded_const Seminorm.isBounded_const
@@ -245,7 +245,7 @@ theorem const_isBounded (ΞΉ : Type _) [Nonempty ΞΉ] {p : Seminorm π E} {q :
theorem isBounded_sup {p : ΞΉ β Seminorm π E} {q : ΞΉ' β Seminorm πβ F} {f : E βββ[Οββ] F}
(hf : IsBounded p q f) (s' : Finset ΞΉ') :
- β (C : ββ₯0)(s : Finset ΞΉ), (s'.sup q).comp f β€ C β’ s.sup p := by
+ β (C : ββ₯0) (s : Finset ΞΉ), (s'.sup q).comp f β€ C β’ s.sup p := by
classical
obtain rfl | _ := s'.eq_empty_or_nonempty
Β· exact β¨1, β
, by simp [Seminorm.bot_eq_zero]β©
@@ -647,7 +647,7 @@ theorem continuous_from_bounded {p : SeminormFamily π E ΞΉ} {q : SeminormFami
theorem cont_withSeminorms_normedSpace (F) [SeminormedAddCommGroup F] [NormedSpace πβ F]
[UniformSpace E] [UniformAddGroup E] {p : ΞΉ β Seminorm π E} (hp : WithSeminorms p)
- (f : E βββ[Οββ] F) (hf : β (s : Finset ΞΉ)(C : ββ₯0), (normSeminorm πβ F).comp f β€ C β’ s.sup p) :
+ (f : E βββ[Οββ] F) (hf : β (s : Finset ΞΉ) (C : ββ₯0), (normSeminorm πβ F).comp f β€ C β’ s.sup p) :
Continuous f := by
rw [β Seminorm.isBounded_const (Fin 1)] at hf
exact continuous_from_bounded hp (norm_withSeminorms πβ F) f hf
@@ -74,7 +74,7 @@ namespace SeminormFamily
/-- The sets of a filter basis for the neighborhood filter of 0. -/
def basisSets (p : SeminormFamily π E ΞΉ) : Set (Set E) :=
- β (s : Finset ΞΉ) (r) (_hr : 0 < r), singleton <| ball (s.sup p) (0 : E) r
+ β (s : Finset ΞΉ) (r) (_ : 0 < r), singleton <| ball (s.sup p) (0 : E) r
#align seminorm_family.basis_sets SeminormFamily.basisSets
variable (p : SeminormFamily π E ΞΉ)
fix-comments.py
on all files.@@ -380,7 +380,7 @@ variable {p : SeminormFamily π E ΞΉ}
/-- Convergence along filters for `WithSeminorms`.
-Variant with `finset.sup`. -/
+Variant with `Finset.sup`. -/
theorem WithSeminorms.tendsto_nhds' (hp : WithSeminorms p) (u : F β E) {f : Filter F} (yβ : E) :
Filter.Tendsto u f (π yβ) β β (s : Finset ΞΉ) (Ξ΅), 0 < Ξ΅ β βαΆ x in f, s.sup p (u x - yβ) < Ξ΅ :=
by simp [hp.hasBasis_ball.tendsto_right_iff]
Positivity extensions for NonnegHomClass
(this includes AbsoluteValue
and Seminorm
), IsAbsoluteValue
, norm, the NNReal
-to-Real
coercion, factorials, square roots, distance (in a metric space), and diameter.
I tried to do these "properly" using Qq but I hit various errors I couldn't fix -- see https://leanprover.zulipchat.com/#narrow/stream/287929-mathlib4/topic/Qq.20doesn't.20know.20that.20two.20things.20have.20the.20same.20type for some examples.
cc @dwrensha
Co-authored-by: Floris van Doorn <fpvdoorn@gmail.com>
@@ -344,8 +344,6 @@ theorem WithSeminorms.T1_of_separating (hp : WithSeminorms p)
rw [β isOpen_compl_iff, hp.isOpen_iff_mem_balls]
rintro x (hx : x β 0)
cases' h x hx with i pi_nonzero
- -- Porting note: the following line shouldn't be needed, but otherwise `positivity` fails later
- have : p i x β₯ 0 := map_nonneg _ _
refine' β¨{i}, p i x, by positivity, subset_compl_singleton_iff.mpr _β©
rw [Finset.sup_singleton, mem_ball, zero_sub, map_neg_eq_map, not_lt]
#align with_seminorms.t1_of_separating WithSeminorms.T1_of_separating
Co-authored-by: Moritz Doll <moritz.doll@googlemail.com>
The unported dependencies are
algebra.order.module
init.core
algebra.order.monoid.cancel.defs
algebra.abs
algebra.group_power.lemmas
init.data.list.basic
algebra.order.monoid.cancel.basic
init.data.list.default
topology.subset_properties
init.logic
The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file